2012年中考数学一轮复习精品讲义(第5章相交线与平行线)(4)
解答:解:∵∠CDE=150°, ∴∠CDB=180°﹣∠CDE=30°, ∵AB∥CD, ∴∠ABE=∠CDB=30°, ∵BE平分∠ABC, ∴∠ABC=2∠ABD=60°, ∵AB∥CD, ∴∠ABC+∠C=180°, ∴∠C=180°﹣∠ABC=120°. 故选C.
点评:此题考查了平行线的性质,邻补角的定义与角平分线的定义.解题的关键是注意掌握两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用. 12. (2011?德州,4,3分)如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于( )
A、55° B、60° C、65° D、70°
考点:三角形内角和定理;对顶角、邻补角;平行线的性质。 分析:设∠2的对顶角为∠5,∠1在l2上的同位角为∠4,结合已知条件可推出∠1=∠4=40°,
∠2=∠5=75°,即可得出∠3的度数 解答:解:∵直线l1∥l2,∠1=40°,∠2=75°,
∴∠1=∠4=40°,∠2=∠5=75°, ∴∠3=65°. 故选C.
点评:本题主要考查三角形的内角和定理,平行线的性质和对顶角的性质,关键在于根据已知条件找到有关相等的角.
13. (2011?临沂,3,3分)如图.己知AB∥CD,∠1=70°,则∠2的度数是( ) A、60° B、70° C、80° D、110
考点:平行线的性质。 分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性
质,即可求得∠2的度数. 解答:解:∵AB∥CD,
∴∠1=∠3=70°, ∵∠2+∠3=180°, ∴∠2=110°. 故选D.
点评:此题考查了平行线的性质.注意数形结合思想的应用. 14. (2011泰安,8,3分)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为( )
A.25° B.30° C.20° D.35° 考点:平行线的性质;对顶角.邻补角;三角形的外角性质。 专题:计算题。 分析:根据平角的定义求出∠ACR,根据平行线的性质得出∠FDC=∠ACR=70°,求出∠AFD,即可得到答案.
解答:解: ∵∠β=20°,∠ACB=90°, ∴∠ACR=180°-90°-20°=70°, ∵l∥m,
∠FDC=∠ACR=70°, ∴∠AFD=∠FDC-∠A=70°-45°=25°, ∴∠a=∠AFD=25°, 故选A.
点评:本题主要考查对平行线的性质,三角形的外角性质,对顶角.邻补角等知识点的理解和掌握,求出∠AFD的度数是解此题的关键. 15. (2011四川泸州,4,2分)如图,∠1与∠2互补,∠3=135°,则∠4的度数是( )
A.45° B.55° C.65° D.75°
考点:平行线的判定与性质;对顶角、邻补角.专题:计算题. 分析:因为∠1与∠2互补,所以a∥b,又因为∠3=∠5,所以∠4与∠5互补,则∠4的度数可求.
解答:解:∵∠1与∠2互补, ∴a∥b, ∵∠3=∠5, ∴∠5=135°, ∵a∥b, ∴∠4与∠5互补, ∴∠4=180°-135°=45°. 故选A.
点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
16. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果 ∠1=32°,那么∠2的度数是( ) A、32° B、58° C、68° D、60°
【答案】B
【考点】平行线的性质;余角和补角.
【专题】计算题
【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.
【解答】解:根据题意可知∠1+∠2=90°,所以∠2=90°-∠1=58°.故选B.
【点评】主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果. 17.(2011?南充,3,3分)如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是( )
A、∠C=60° B、∠DAB=60° C、∠EAC=60° D、∠BAC=60° 考点:平行线的性质。 专题:几何图形问题。
分析:根据平行线的性质,根据内错角相等,逐个排除选项即可得出结果. 解答:解:A、无法判断,故本选项错误,
B、∠B=60°,∴∠DAB=60°,故本选项正确, C、无法判断,故本选项错误, D、无法判断,故本选项错误, 故选B
点评:本题考查了两直线平行,内错角相等的性质,难度适中.. 18. (2011四川雅安,5,3分)如图,直线l1,l2被直线l3所截,且l1∥l2,若∠1=72°,∠2=58°,则∠3=( )
A.45° B.50° C.60° D.58°
考点:平行线的性质。 专题:证明题。
分析:根据两直线l1∥l2,推知内错角∠3=∠5;然后由对顶角∠2=∠4、三角形内角和定理以及等量代换求得∠3=50°.
解答:解:∵l1∥l2, ∴∠3=∠5(两直线平行,内错角相等); 又∵∠2=∠4(对顶角),∠1=72°,∠2=58°, ∴∠5=50°(三角形内角和定理), ∴∠3=50°(等量代换). 故选B.
点评:本题考查是平行线的性质:两直线平行,内错角相等.
19. (2011四川省宜宾市,4,3分)如图,直线AB、CD相交于点E,DF∥AB. 若∠D=70°, 则∠CEB等于( ) A.70° B.80° C.90° D.110°
CAEBFD(4题图)
考点:平行线的性质.
分析:由DF∥AB,根据两直线平行,内错角相等,即可求得∠BED的度数,又由邻补角的定义,即可求得答案. 答案:解:∵DF∥AB, ∴∠BED=∠D=70°, ∵∠BED+∠BEC=180°,
∴∠CEB=180°-70°=110°. 故选D. 点评:此题考查了平行线的性质.注意两直线平行,内错角相等,注意数形结合思想的应用. 20.(2011四川雅安5,3分)如图,直线l1,l2被直线l3所截,且l1∥l2,若∠1=72°,∠2=58°,则∠3=(
A 45° B 50° C 60° D 58° 考点:平行线的性质。 专题:证明题。
分析:根据两直线l1∥l2,推知内错角∠3=∠5;然后由对顶角∠2=∠4、三角形内角和定理以及等量代换求得∠3=50°. 解答:解:∵l1∥l2,∴∠3=∠5(两直线平行,内错角相等);
又∵∠2=∠4(对顶角),∠1=72°,∠2=58°,
∴∠5=50°(三角形内角和定理), ∴∠3=50°(等量代换). 故选B.
点评:本题考查是平行线的性质:两直线平行,内错角相等.
21. (2011福建龙岩,6,4分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是( ) 北A北 A.25° B.30° C.35° D.40°
乙甲α丁(第6题图)丙
…… 此处隐藏:1196字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [学前教育]MC9S12XS256RMV1 xs128芯片手册4
- [学前教育]安东尼语录经典语录
- [学前教育]e级gps控制测量技术设计书
- [学前教育]苏教版2022-2022学年八年级下学期期末
- [学前教育]装修公司推广 营销
- [学前教育]家政服务合同(完整版)
- [学前教育]湖北省2016届高三联考语文试题
- [学前教育]爱立信无涯学习系统LTE题库1-LTE基础知
- [学前教育]揭秘大众柴油车作弊软件原理
- [学前教育]人才流失原因及对策分析
- [学前教育]房屋建筑施工工程劳务分包合同
- [学前教育]国际贸易实务试卷A卷09.6
- [学前教育]校园废品回收活动计划方案书范文格
- [学前教育]电大成本会计试题及答案
- [学前教育]大学物理实验 华南理工出版社 绪论答案
- [学前教育]爱丁堡产后抑郁量表
- [学前教育]液压冲击的危害、产生原因与防止方法(
- [学前教育]学生工作总结高一学生期中考试总结_020
- [学前教育]人民医院医疗废物管理规章制度大全
- [学前教育]阳光维生素的巨大抗癌潜能阅读题答案.d
- 马云在云锋基金江苏论坛闭幕式的发言
- 试论小学体育教育中的心理健康教育-教
- 语文A版一年级下册《语文乐园一》教学
- 2021四川大学物理化学考研真题经验参考
- [人教A版]2015-2016学年高中数学 第二
- 终端网点销售返利协议书
- 江苏省2015年眼科学主治医师青光眼考试
- 2017年部编人教版八年级语文上册教案
- 十一中学七年级英语上册Unit7Howmuchar
- 以赛促教的创新性实验教学机制建设实践
- 平凉市崆峒区2015七年级下生物期末试题
- 琶洲(地块五)A、B塔楼1、2#塔吊基础
- 一级医院工作制度与人员岗位职责
- 2018北京西城区高三二模理科数学试题及
- 炒股密码线技术 - 图文
- 职高学生生涯发展辅导教案
- 语文人教版四年级上册8 世界地图引出的
- 最新最新人教版二年级上册全册数学教案
- 2017高考英语全国2卷精彩试题(有问题
- 普通心理学笔记