2012年中考数学一轮复习精品讲义(第5章相交线与平行线)
第五章 相交线与平行线
本章小结
小结1 本章概述
本章的主要内容是两条直线的位置关系——相交与平行.特别是垂直和平行关系是平面几何所要研究的基本内容之一.这一章的内容是很重要的基本知识,是几何学习的重要阶段,要引起高度重视.教材在给出对顶角、邻补角、垂线、点到直线的距离等概念的基础上又给出了对顶角、邻补角的性质、垂线的基本性质和平行线的判定和性质,最后给出平移的概念、性质以及利用平移绘制图案. 小结2 本章学习重难点
【本章重点】了解对顶角、余角、补角的概念;掌握等角的余角相等,等角的补角相等;掌握垂线、垂线段的概念;知道两条直线平行,同位角相等以及同位角相等,两直线平行,进一步探索平行线的性质和判定.
【本章难点】掌握垂线段最短的性质,体会点到直线的距离的意义;通过具体实例认识平移;能按要求作出简单平面图形平移后的图形,利用平移进行图案设计,认识和欣赏平移在现实生活中的应用. 小结3 中考透视
中考所考查的内容主要体现在以下几个方面:
1. 对顶角、邻补角、垂线、点到直线的距离等概念的理解,对顶角、邻补角以及垂线性质的应用,包括实际应用.
2. 同位角、内错角、同旁内角的含义,能由线找出角、由角说出线. 3. 平行线的识别与特征,以及在实际问题中的应用. 4. 简单命题的证明.
知识网络结构图
专题总结及应用
一、知识性专题
专题1 有关基本图形的问题 【专题解读】 本章中主要考查数图形的个数问题,构造基本图形以及基本图形的组合,
如平行线与角平分线的组合,平行线与平行线的组合等.
例1 如图5-132所示,直线AB,CD,EF都经过点O,图中共有几对对顶角? 分析 数基本图形不能重复,不能遗漏.我们知道两条直线相交有两对对顶角,图中有3组两条直线相交,故对顶角有2×3=6(对).
解:共有6对对顶角.
【解题策略】 数图形个数及书写时,应注意顺序性,这样不易重复和遗
漏.
例2 如图5-133所示,图中共有几对同旁内角?
分析 我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角.图形中有两个“三线八角”,即CD,EF被GH所截,形成两对同旁内角,AB,EF被GH所截,又形成两对同旁内角,所以共有4对同旁内角.
解:图中共有4对同旁内角.
【解题策略】 注意观察同旁内角的特点.
例3 如图5-134所示,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.
分析 此图不是我们所学的“三线八角”的基本图形,需添加一些线(辅助线)把它们转化成我们熟悉的基本图形.
解:如图5-134所示,过点P作射线PN∥AB. 因为AB∥CD(已知),
所以PN∥CD(平行于同一条直线的两直线平行), 所以∠4=∠2=25°(两直线平行,内错角相等). 因为PN∥AB(已知),
所以∠3=∠1=32°(两直线平行,内错角相等). 所以∠BPC=∠3+∠4=32°+25°=57°.
【解题策略】 构造基本图形就是将残缺的基本图形补全. 例4 如图5-135所示,已知AB∥CD,EF分别交AB,CD于G,H,GM,HN分别平分∠AGF,∠EHD.试说明GM∥HN.
分析 要说明GM∥HN,可说明∠1=∠2,而由GM,HN分别为∠AGF,∠EHD的平分线,可知∠1=
11∠AGF,∠2=∠EHD,又由AB∥CD,有∠22AGF=∠EHD,故有∠1=∠2,从而结论成立.
解:因为GM,HN分别平分∠AGF,∠EHD(已知), 所以∠1= ∠2=
1∠AGF, 21∠EHD(角平分线定义). 2又因为AB∥CD(已知),
所以∠AGF=∠EHD(两直线平行,内错角相等), 所以∠1=∠2,
所以GM∥HN(内错角相等,两直线平行).
【解题策略】 此题考查平行线的性质、判定以及角平分线的综合应用. 例5 如图5-136所示,已知AB∥CD,BC∥DE.试说明∠B=∠D.
分析 条件为直线平行,故可根据平行线的性质说明. 解:因为AB∥CD(已知),
所以∠B=∠C(两直线平行,内错角相等). 因为BC∥DE(已知),
所以∠C=∠D(两直线平行,内错角相等).
【解题策略】 此题重点考查了平行线的性质的应用. 例6 如图5-137所示,已知AB∥CD,G为AB上任一点,GE,GF分别交CD于E,F.试说明∠1+∠2+∠3=180°.
分析 要说明180°问题,想到了“平角”和“两直线平行,同旁内角互补”这两个知识点,故可用它们解决问题.
解:因为AB∥CD(已知),
所以∠4=∠2,∠3=∠5(两直线平行,内错角相等). 因为∠4+∠1+∠5=180°(平角定义), 所以∠2+∠1+∠3=180°(等量代换).
【解题策略】 此题把说明∠2+∠1+∠3=180°转化为说明∠1+∠5+∠4=180°,应用等量代换解决了问题.
例7 如图5-138所示,AB,DC相交于点O,OE,OF分别平分∠AOC,∠BOC.试说明OE⊥OF
解:因为OE,OF分别平分∠AOC与∠BOC(已知),
11∠AOC,∠2=∠BOC(角平分线定义). 2211所以∠1+∠2=∠AOC+∠BOC
221=(∠AOC+∠BOC). 2所以∠1=
又因为∠AOC+∠BOC=180°(邻补角定义), 所以∠1+∠2=
1×180°=90°, 211∠AOC和∠BOC是解22所以OE⊥OF(垂直定义).
【解题策略】 根据角平分线定义将∠1和∠2分别转化为
此题的关键.
例8 如图5-139所示,已知AB∥CD,∠CED=90°.试说明∠1+∠2=90°. 解:因为AB∥CD(已知),
所以∠3=∠1,∠4=∠2(两直线平行,内错角相等). 因为∠3+∠4+∠CED=180°(平角定义), ∠CED=90°(已知), 所以∠3+∠4=90°,
所以∠1+∠2=90°(等量代换).
【解题策略】 根据两直线平行分别将∠1和∠2转化为∠3和∠4,再根据平角定义由∠3+∠4+∠CED=180°和已知∠CED=90°可说明∠1+∠2=90°.
例9 如图5-140所示,在三角形ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC.试说明∠1=∠2.
解:因为CD⊥AB,FG⊥AB(已知), 所以∠CDB=∠FGB=90°(垂直定义),
所以∠2=∠3(两直线平行,同位角相等). 因为DE∥BC(已知),
所以∠1=∠3(两直线平行,内错角相等), 所以∠1=∠2(等量代换).
【解题策略】 多次运用平行线的性质说明∠1,∠2,∠3的关系. 二、规律方法专题
专题2 基本命题的计算与证明
【专题解读】 基本命题的计算与证明涉及的题型有(1)有关角的计算; (2)有关角相等的判定;(3)判定平行问题;(4)判定垂直问题;(5)判定共线问题.
例10 如图5-141所示,已知∠4=70°,∠3=110°,∠1=46°,求∠2的度数. 分析 由∠3+∠4=180°,知AB∥CD,故∠2=180°-∠1. 解:因为∠4=70°,∠3=110°(已知), 所以∠4+∠3=180°,
所以AB∥CD(同旁内角互补,两直线平行),
所以∠2=180°-∠1=180°-46°=134°(两直线平行,同旁内角互补).
【解题策略】 此题考查由同旁内角互补判定两直线平行,由两直线平行可行同旁内角互补,从而计算相关的角.
例11 如图5-142所示,AB∥CD,EB∥DF.试说明∠1=∠2. 解:因为AB∥CD(已知),
所以∠1+∠3=∠2+∠4(两直线平行,内错角相等). 因为EB∥DF(已知),
所以∠3=∠4(两直线平行,内错角相等), 所以∠1=∠2(等式性质).
【解题策略】 判定角相等的方法有: (1)同角(等角)的余角相等; (2)同角(等角)的补角相等; (3)对顶 …… 此处隐藏:3293字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [学前教育]MC9S12XS256RMV1 xs128芯片手册4
- [学前教育]安东尼语录经典语录
- [学前教育]e级gps控制测量技术设计书
- [学前教育]苏教版2022-2022学年八年级下学期期末
- [学前教育]装修公司推广 营销
- [学前教育]家政服务合同(完整版)
- [学前教育]湖北省2016届高三联考语文试题
- [学前教育]爱立信无涯学习系统LTE题库1-LTE基础知
- [学前教育]揭秘大众柴油车作弊软件原理
- [学前教育]人才流失原因及对策分析
- [学前教育]房屋建筑施工工程劳务分包合同
- [学前教育]国际贸易实务试卷A卷09.6
- [学前教育]校园废品回收活动计划方案书范文格
- [学前教育]电大成本会计试题及答案
- [学前教育]大学物理实验 华南理工出版社 绪论答案
- [学前教育]爱丁堡产后抑郁量表
- [学前教育]液压冲击的危害、产生原因与防止方法(
- [学前教育]学生工作总结高一学生期中考试总结_020
- [学前教育]人民医院医疗废物管理规章制度大全
- [学前教育]阳光维生素的巨大抗癌潜能阅读题答案.d
- 马云在云锋基金江苏论坛闭幕式的发言
- 试论小学体育教育中的心理健康教育-教
- 语文A版一年级下册《语文乐园一》教学
- 2021四川大学物理化学考研真题经验参考
- [人教A版]2015-2016学年高中数学 第二
- 终端网点销售返利协议书
- 江苏省2015年眼科学主治医师青光眼考试
- 2017年部编人教版八年级语文上册教案
- 十一中学七年级英语上册Unit7Howmuchar
- 以赛促教的创新性实验教学机制建设实践
- 平凉市崆峒区2015七年级下生物期末试题
- 琶洲(地块五)A、B塔楼1、2#塔吊基础
- 一级医院工作制度与人员岗位职责
- 2018北京西城区高三二模理科数学试题及
- 炒股密码线技术 - 图文
- 职高学生生涯发展辅导教案
- 语文人教版四年级上册8 世界地图引出的
- 最新最新人教版二年级上册全册数学教案
- 2017高考英语全国2卷精彩试题(有问题
- 普通心理学笔记