教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 政务民生 >

2013中考数学分类汇总专项训练 - 探究、动态类题目(7)

来源:网络收集 时间:2025-09-15
导读: (3)拓展延伸 如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法. 25.(16分)(2013?六盘水)已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以

(3)拓展延伸 如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法. 25.(16分)(2013?六盘水)已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处. (1)求经过点O,C,A三点的抛物线的解析式. (2)求抛物线的对称轴与线段OB交点D的坐标.

(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由.

25.(12分)(2011?珠海)阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=

2

(1+).善于思考的小明进行了以下探索:

222

设a+b=(m+n)(其中a、b、m、n均为整数),则有a+b=m+2n+2mn.

22

∴a=m+2n,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b

2

2

=,用含m、n的式子分别表

示a、b,得:a= m+3n ,b= 2mn ;

(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2

2); (3)若a+4

=

,且a、m、n均为正整数,求a的值?

=( 1 + 1

26.(12分)(2013?遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?

(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

24.(本小题满分9分)如图1,点

为线段

将线段

分成两部分,如果

,那么称点

的黄金分割点。某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄

的图形分成两部

金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为分,这两部分的面积分别为线.

(1)如图2,在△

请问点是否是

,如果

,那么称直线为该图形的黄金分割

中,°,,的平分线交边上的黄金分割点,并证明你的结论;

是不是△

于点,

(2)若△在(1)的条件下,如图(3),请问直线割线,并证明你的结论; (3)如图4,在直角梯形延长、不是直角梯形

中,

的黄金分

,对角线、交于点,是

交于点,连接交梯形上、下底于、

的黄金分割线,并证明你的结论.

两点,请问直线

A

C B

C F H

D B A

· · · A A D B D C E C B 图1 图2 图3 图4 24.(10分)(2013?天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.

(1)判断与操作:

如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由. (2)探究与计算:

已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值. (3)归纳与拓展:

已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).

24.(9分)(2013?达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理

∵AB=CD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合. ∵∠ADC=∠B=90°,

∴∠FDG=180°,点F、D、G共线.

根据 SAS ,易证△AFG≌ △AEF ,得EF=BE+DF. (2)类比引申 如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系 ∠B+∠D=180° 时,仍有EF=BE+DF. (3)联想拓展

如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程. 四川绵阳 25.(本题满分14分)

我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心。重心有很多美妙的性质,如在关线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题。请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足△ABC的重心吗?如果是,请证明;如果不是,请说明理由;

(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG.S△AGH分别表示四边形BCHG和△AGH的面积,试探究

; ,试判断O是

S四边形BCGH

S△AGH的最大值。

10. (2013四川南充,9,3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论::①AD=BE=5cm;②当0<t≤5时;

;③直线NH的解析式为y=-

中正确的结论个数为

t+27;④若△ABE与△QBP相似,则t=秒。其

( ) C. 2 C

D. 1

A. 4 B. 3

24.(12分)(2013?攀枝花)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=

.动点P在线段AB

上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)点A的坐标为 (﹣4,0) ,直线l的解析式为 y=x+4 ;

(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围; (3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;

(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

23.(本小题 …… 此处隐藏:2130字,全部文档内容请下载后查看。喜欢就下载吧 ……

2013中考数学分类汇总专项训练 - 探究、动态类题目(7).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/446877.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)