2013中考数学分类汇总专项训练 - 探究、动态类题目(5)
26.(10分)(2013?吉林)如图①,在平面直角坐标系中,点P(0,m)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x于点A、B,交抛物线C2:y=x于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD. 【猜想与证明】 填表: m 1 2 2
2
2
3 =
.请证明你的猜想.
由上表猜想:对任意m(m>0)均有【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为 ;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差; 【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为
.
河北
9.如图2,淇淇和嘉嘉做数学游戏:
假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y = A.2 B.3 C.6 D.x+3 26.(本小题满分14分)
一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些 液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (∠CBE = α,如图17-1所示).
探究如图17-1,液面刚好过棱CD,并与棱BB′ 交于 点Q,此时液体的形状为直三棱柱,其三视图及尺寸如 图17-2所示.解决问题:
(1)CQ与BE的位置关系是___________,BQ的长是____________dm; (2)求液体的体积;(参考算法:直棱柱体积V液=底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=4,tan37°=4)
拓展在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.
[温馨提示:下页还有题!] 延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.
3
3
河南一
22.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其
中∠C=90°, ∠B=∠E=30°. (1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上
时,填空:
①线段DE与AC的位置关系是_________;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________________.
(2)猜想论证
A(D)
图1
C
A 图2
C D E B(E)
B 当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC 中BC、CE边上的高,请你证明小明的猜想.
A C N M D B
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).
若在射线BA上存在点F,使S△DCF=S△BDE, 请直接写出相应的BF的长. ....
B E C 图4 222.(14分)我们知道,经过原点的抛物线的解析式可以是y?ax?bx(a?0) (1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=__________;
当顶点坐标为(m,m),m?0时,a与m之间的关系式是____________________ (2)继续探究,如果b?0,且过原点的抛物线顶点在直线y?kx(k?0)上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1,A2,?,An在直线y?x上,横坐标依次
为1,2,?,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,?,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过Dn,求所有满足条件的正方形边长。
D A
22.(本题满分12分)如图①,在矩形纸片ABCD中,AB=3+1,AD=3.
(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D¢处,压平折痕交CD于点E,则折痕AE的长为_______________;
CED ,BⅱC交E向左翻折,压平后得四边形Bⅱ(2)如图③,再将四边形BCED¢沿D¢AE于点F,则四边形BⅱFED的面积为_______________;
(3)如图④,将图②中的DAED¢绕点E顺时针旋转a角,得DAⅱED ,使得EA¢恰好经过顶点B,求弧D?D??的长.(结果保留?)
图①图②图③图④ (第22题图)
25.(本题满分14分)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,
BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿AOD和D?A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒. (1)求菱形ABCD的周长;
(2)记DDMN的面积为S, 求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.
25.(14分)(2013?莆田)在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E. (1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF; (2)拓展探究:若AC≠BC. ①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它
(第25题图) 条件不变,请探究AE与DF的数量关系并加以证明.
21.(10分)(2013?三明)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB. (1)求证:△BCP≌△DCP; (2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 58 度.
…… 此处隐藏:1055字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [政务民生]2013年公共基础知识热点问题(七)
- [政务民生]检验检测机构资质认定评审准则及释义20
- [政务民生]关于印发重庆市房屋建筑和市政基础设施
- [政务民生]1、隧道洞身开挖支护施工技术交底书
- [政务民生]2015年山东省17地市中考语文试题分类汇
- [政务民生]2-高级会计师资格考试和评审流程图
- [政务民生]2018版中国清分机行业发展分析及前景策
- [政务民生]新课改高中政治探究
- [政务民生]2018-2024年中国新型组合房屋行业投资
- [政务民生]2015年上海市春季高考数学模拟试卷五
- [政务民生]灌砂法及环刀法测压实度(带计算过程)
- [政务民生]运筹学实验2求解非线性规划
- [政务民生]劝学、逍遥游默写(教师卷)
- [政务民生]《运筹学》 - 期末考试 - 试卷A - 答案
- [政务民生]八年级英语下册 Module 6 Hobbies测试
- [政务民生]2019年宪法知识竞赛试题库100题(含答
- [政务民生]自动化英文文献翻译
- [政务民生]公文格式实施细则
- [政务民生]高一地理上册课堂跟踪练习题6
- [政务民生]会计继续教育习题及答案
- 第三章 无约束最优化方法
- 泛读教程第三册答案
- 魏晋南北朝文学
- 幂的运算复习题
- 城市环境问题的成因与治理策略_以社会
- 钢结构行业产业链及竞争分析研究
- 新型热塑性弹性体增韧聚丙烯的研究
- 中国旅游地理B卷试题及答案
- (苏教版)五年级数学上册第三单元测试卷
- 不稳定性心绞痛诊断与治疗
- 俞氏国际后勤职能部门绩效考核办法
- GB7258-2017新标准考试题含答案
- 小学生汉字听写比赛活动方案
- 1.3《平抛运动》学案 教科版必修2
- 2011香港特别行政区公务员考试复习资料
- 考虑水力条件变化的城市给水管网可靠性
- 表面活性剂在油田开发和生产中的应用
- ITT内部培训资料-FI端吸泵的介绍
- 文明守纪,从我做起学生发言稿
- 初中读《聊斋志异》心得体会800字范文