高中数学常用公式及常用结论(8)
nnnnnCmn?Cmn?C...?C?C(mn)!?nmn?2n2nn. N??mm!m!(n!)(3)(非平均分组有归属问题)将相异的P(P=n1+n2+?+nm)个物体分给m个人,物件必须被分完,分别得到n1,n2,?,nm件,且n1,n2,?,nm这m个数彼此不相等,则
nmn1n2其分配方法数共有N?Cp?CpCn?m!??n1...mp!m!.
n1!n2!...nm!(4)(非完全平均分组有归属问题)将相异的P(P=n1+n2+?+nm)个物体分给m个人,物件必须被分完,分别得到n1,n2,?,nm件,且n1,n2,?,nm这m个数中分别有a、
p!m!.
a!b!c!...n1!n2!...nm!(a!b!c!...)(5)(非平均分组无归属问题)将相异的P(P=n1+n2+?+nm)个物体分为任意的n1,n2,?,nm件无记号的m堆,且n1,n2,?,nm这m个数彼此不相等,则其分配方法数
p!有N?.
n1!n2!...nm!(6)(非完全平均分组无归属问题)将相异的P(P=n1+n2+?+nm)个物体分为任意的n1,
b、c、?个相等,则其分配方法数有N? ?nmn1n2Cp?Cp...C?n1nm?m!n2,?,nm件无记号的m堆,且n1,n2,?,nm这m个数中分别有a、b、c、?个相等,
p!则其分配方法数有N?.
n1!n2!...nm!(a!b!c!...)(7)(限定分组有归属问题)将相异的p(p?n1+n2+?+nm)个物体分给甲、乙、丙,??等m个人,物体必须被分完,如果指定甲得n1件,乙得n2件,丙得n3件,?时,则无论n1,n2,?,nm等m个数是否全相异或不全相异其分配方法数恒有
nmn1n2N?Cp?CpCn??n1...mp!.
n1!n2!...nm!159.“错位问题”及其推广
贝努利装错笺问题:信n封信与n个信封全部错位的组合数为
1111?????(?1)n]. 2!3!4!n!推广: n个元素与n个位置,其中至少有m个元素错位的不同组合总数为 f(n)?n![1234f(n,m)?n!?Cm(n?1)!?Cm(n?2)!?Cm(n?3)!?Cm(n?4)!pm???(?1)pCm(n?p)!???(?1)mCm(n?m)!
1234pmCmCmCmCmpCmmCm?n![1?1?2?2?4???(?1)p???(?1)m].
AnAnAnAnAnAn160.不定方程x1+x2+?+xn?m的解的个数
(1)方程x1+x2+?+xn?m(n,m?N)的正整数解有Cm?1个. (2) 方程x1+x2+?+xn?m(n,m?N)的非负整数解有 Cn?m?1个.
(3) 方程x1+x2+?+xn?m(n,m?N?)满足条件xi?k(k?N,2?i?n?1)
n?1的非负整数解有Cm个. ?1?(n?2)(k?1)??n?1?n?1(4) 方程x1+x2+?+xn?m(n,m?N?)满足条件xi?k(k?N,2?i?n?1)
n?11n?12n?1n?2n?2n?1的正整数解有Cn?m?1?Cn?2Cm?n?k?2?Cn?2Cm?n?2k?3???(?1)Cn?2Cm?1?(n?2)k个.
?161.二项式定理
0n1n?12n?22rn?rrnn(a?b)n?Cna?Cnab?Cnab???Cnab???Cnb ;
二项展开式的通项公式
rn?rr1,2?,n). Tr?1?Cnab(r?0,162.等可能性事件的概率
P(A)?m. n163.互斥事件A,B分别发生的概率的和 P(A+B)=P(A)+P(B).
164.n个互斥事件分别发生的概率的和
P(A1+A2+?+An)=P(A1)+P(A2)+?+P(An). 165.独立事件A,B同时发生的概率 P(A·B)= P(A)·P(B).
166.n个独立事件同时发生的概率
P(A1· A2·?· An)=P(A1)· P(A2)·?· P(An). 167.n次独立重复试验中某事件恰好发生k次的概率
kkPn(k)?CnP(1?P)n?k.
168.离散型随机变量的分布列的两个性质 (1)P,2,?); i?0(i?1(2)P1?P2???1. 169.数学期望
E??x1P1?x2P2???xnPn??
170.数学期望的性质
(1)E(a??b)?aE(?)?b. (2)若?~B(n,p),则E??np.
(3) 若?服从几何分布,且P(??k)?g(k,p)?qk?1p,则E??171.方差
1. pD???x1?E???p1??x2?E???p2????xn?E???pn??
172.标准差
222??=D?.
173.方差的性质
(1)D?a??b??a2D?;
(2)若?~B(n,p),则D??np(1?p).
(3) 若?服从几何分布,且P(??k)?g(k,p)?qk?1p,则D??174.方差与期望的关系
q. 2pD??E?2??E??.
175.正态分布密度函数
2f?x??1e2?62x?????262,x????,???,式中的实数μ,?(?>0)是参数,分别表
示个体的平均数与标准差.
176.标准正态分布密度函数
1e,x????,???. 2?62177.对于N(?,?),取值小于x的概率
?x???F?x?????.
???P?x1?x0?x2??P?x?x2??P?x?x1? f?x???x22?F?x2??F?x1?
?x????x1??????2?????.
??????178.回归直线方程
nn??xi?x??yi?y??xiyi?nxy???b?i?1n?i?1n?2. y?a?bx,其中?xi?x?xi2?nx2????i?1i?1??a?y?bx179.相关系数
r???x?x??y?y?iii?1n?(x?x)?(y?y)2iii?1i?1nn ?2??x?x??y?y?iii?1n(?xi2?nx2)(?yi2?ny2)i?1i?1nn. |r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小. 180.特殊数列的极限
?0?n(1)limq??1n???不存在?|q|?1q?1|q|?1或q??1.
?0(k?t)?aknk?ak?1nk?1???a0?at(2)lim??(k?t).
n??bnt?bnt?1???bbtt?10?k?不存在 (k?t)?(3)S?lima11?qn1?qx?x0?n????a1(S无穷等比数列a1qn?1? (|q|?1)的和). 1?q?181. 函数的极限定理
x?x0limf(x)?a?lim?f(x)?lim?f(x)?a.
x?x0182.函数的夹逼性定理
如果函数f(x),g(x),h(x)在点x0的附近满足: (1)g(x)?f(x)?h(x);
(2)limg(x)?a,limh(x)?a(常数),
x?x0x?x0则limf(x)?a.
x?x0本定理对于单侧极限和x??的情况仍然成立. 183.几个常用极限
1?0,liman?0(|a|?1);
n??n??n11(2)limx?x0,lim?.
x?x0x?x0xx0(1)lim184.两个重要的极限 (1)limsinx?1;
x?0xx?1?(2)lim?1???e(e=2.718281845?).
x???x?185.函数极限的四则运算法则
若limf(x)?a,limg(x)?b,则
x?x0x?x0(1)lim??f?x??g?x????a?b;
x?x0x?x0(2)lim??f?x??g?x????a?b; (3)limx?x0f?x?a??b?0?. g?x?bn??186.数列极限的四则运算法则 若liman?a,limbn?b,则
n??(1)lim?an?bn??a?b;
n??n??(2)lim?an?bn??a?b;
…… 此处隐藏:1550字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [高等教育]公司协助某村精准扶贫工作总结.doc
- [高等教育]高二生物知识点总结(全)
- [高等教育]苏教版数学三年级下册《解决问题的策略
- [高等教育]仪器分析课程学习心得
- [高等教育]2017年五邑大学数学与计算科学学院333
- [高等教育]人教版七年级下册语文第四单元测试题(
- [高等教育]2018年秋七年级英语上册Unit7Howmuchar
- [高等教育]2017年八年级下数学教学工作小结
- [高等教育]湖南省怀化市2019届高三统一模拟考试(
- [高等教育]四年级下册科学_基础训练及答案教材
- [高等教育]城郊煤矿西风井管路伸缩器更换施工安全
- [高等教育]昆八中20182019学年度上学期期末考试
- [高等教育]项目部各类人员任命书
- [高等教育]上市公司经营水务产业的模式
- [高等教育]人教版高二化学第一学期第三章水溶液中
- [高等教育]【中考物理第一轮复习资料】四.压强与
- [高等教育]金坑水电站报废改建工程机电设备更新改
- [高等教育]高中生物教学工作计划简易版
- [高等教育]2017年西华大学攀枝花学院(联合办学)44
- [高等教育]最新整理超短爆笑英文小笑话大全
- 优秀教师继续教育学习心得体会
- 阳历到阴历的转换
- 留守儿童教育案例分析
- 华师17春秋学期《玩教具制作与环境布置
- 测速传感器新型安装装置的现场应用
- 人教版小学数学三年级下册第四单元
- 创业个人意向书
- 山东省潍坊市2012年高考仿真试题(三)
- [恒心][好卷速递]四川省成都外国语学校
- 多少人错把好转反应当成了病情加重处理
- 中外广播电视史复习资料整理
- 江苏省扬州市江都区宜陵镇中学2014-201
- 工程造价专业毕业实习报告
- 广西师范学院心理与教育统计
- aympkrq基于 - asp的博客网站设计与开
- 建筑业外出经营相关流程操作(营改增后
- 人治 德治 法治
- [精华篇]常识判断专项训练题库
- 中国共产党为什么要实行民主集中
- 小学数学第三册第一单元试卷(A、B、C




