高中数学常用公式及常用结论(2)
(2)logamlogan?loga2m?n. 238. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,有
y?N(1?p)x.
39.数列的同项公式与前n项的和的关系
n?1?s1,( 数列{an}的前n项的和为sn?a1?a2???an). an???sn?sn?1,n?240.等差数列的通项公式
an?a1?(n?1)d?dn?a1?d(n?N*);
其前n项和公式为
n(a1?an)n(n?1)?na1?d 22d1?n2?(a1?d)n. 22sn?41.等比数列的通项公式
an?a1qn?1?a1n?q(n?N*); q其前n项的和公式为
?a1(1?qn),q?1?sn??1?q
?na,q?1?1?a1?anq,q?1?或sn??1?q.
?na,q?1?142.等比差数列?an?:an?1?qan?d,a1?b(q?0)的通项公式为
?b?(n?1)d,q?1?an??bqn?(d?b)qn?1?d;
,q?1?q?1?其前n项和公式为
?nb?n(n?1)d,(q?1)?sn??. d1?qnd(b?)?n,(q?1)?1?qq?11?q?43.分期付款(按揭贷款)
ab(1?b)n每次还款x?元(贷款a元,n次还清,每期利率为b). n(1?b)?144.常见三角不等式 (1)若x?(0,?2),则sinx?x?tanx.
(2) 若x?(0,),则1?sinx?cosx?2. 2(3) |sinx|?|cosx|?1.
45.同角三角函数的基本关系式
?sin2??cos2??1,tan?=
46.正弦、余弦的诱导公式
sin?,tan??cot??1. cos?(n为偶数) (n为奇数) (n为偶数) (n为奇数) n?n??(?1)2sin?,sin(??)?? n?12?(?1)2cos?,?
?n??(?1)cos?, cos(??)??n?12?(?1)2sin?,?n247.和角与差角公式
sin(???)?sin?cos??cos?sin?;
cos(???)?cos?cos??sin?sin?;
tan??tan?tan(???)?.
1?tan?tan?sin(???)sin(???)?sin2??sin2?(平方正弦公式);
cos(???)cos(???)?cos2??sin2?.
asin??bcos?=
b定,tan?? ).
a48.二倍角公式
a2?b2sin(???)(辅助角?所在象限由点(a,b)的象限决
sin2??sin?cos?.
cos2??cos2??sin2??2cos2??1?1?2sin2?.
2tan?tan2??.
1?tan2?49. 三倍角公式
sin3??3sin??4sin3??4sin?sin(??)sin(??).
33cos3??4cos3??3cos??4cos?cos(??)cos(??)33????.
3tan??tan3???tan3???tan?tan(??)tan(??). 21?3tan?3350.三角函数的周期公式
函数y?sin(?x??),x∈R及函数y?cos(?x??),x∈R(A,ω,?为常数,且A≠0,ω>0)的周期T?2??;函数y?tan(?x??),x?k???2,k?Z(A,ω,?为常数,且A
≠0,ω>0)的周期T??. ?51.正弦定理
abc???2R. sinAsinBsinC52.余弦定理
a2?b2?c2?2bccosA; b2?c2?a2?2cacosB; c2?a2?b2?2abcosC.
53.面积定理
111aha?bhb?chc(ha、hb、hc分别表示a、b、c边上的高). 222111(2)S?absinC?bcsinA?casinB.
222????????2????????21(|OA|?|OB|)?(OA?OB). (3)S?OAB?2(1)S?54.三角形内角和定理
在△ABC中,有A?B?C???C???(A?B)
?C?A?B???2C?2??2(A?B). 22255. 简单的三角方程的通解
sinx?a?x?k??(?1)karcsina(k?Z,|a|?1). cosx?a?x?2k??arccosa(k?Z,|a|?1).
tanx?a?x?k??arctana(k?Z,a?R).
特别地,有
sin??sin????k??(?1)k?(k?Z).
cos??cos????2k???(k?Z).
tan??tan????k???(k?Z).
56.最简单的三角不等式及其解集
sinx?a(|a|?1)?x?(2k??arcsina,2k????arcsina),k?Z.
sinx?a(|a|?1)?x?(2k????arcsina,2k??arcsina),k?Z. cosx?a(|a|?1)?x?(2k??arccosa,2k??arccosa),k?Z.
cosx?a(|a|?1)?x?(2k??arccosa,2k??2??arccosa),k?Z.
tanx?a(a?R)?x?(k??arctana,k???2),k?Z.
tanx?a(a?R)?x?(k???2,k??arctana),k?Z.
57.实数与向量的积的运算律 设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a·b= b·a (交换律); (2)(?a)·b= ?(a·b)=?a·b= a·(?b); (3)(a+b)·c= a ·c +b·c. 59.平面向量基本定理 …… 此处隐藏:496字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [高等教育]公司协助某村精准扶贫工作总结.doc
- [高等教育]高二生物知识点总结(全)
- [高等教育]苏教版数学三年级下册《解决问题的策略
- [高等教育]仪器分析课程学习心得
- [高等教育]2017年五邑大学数学与计算科学学院333
- [高等教育]人教版七年级下册语文第四单元测试题(
- [高等教育]2018年秋七年级英语上册Unit7Howmuchar
- [高等教育]2017年八年级下数学教学工作小结
- [高等教育]湖南省怀化市2019届高三统一模拟考试(
- [高等教育]四年级下册科学_基础训练及答案教材
- [高等教育]城郊煤矿西风井管路伸缩器更换施工安全
- [高等教育]昆八中20182019学年度上学期期末考试
- [高等教育]项目部各类人员任命书
- [高等教育]上市公司经营水务产业的模式
- [高等教育]人教版高二化学第一学期第三章水溶液中
- [高等教育]【中考物理第一轮复习资料】四.压强与
- [高等教育]金坑水电站报废改建工程机电设备更新改
- [高等教育]高中生物教学工作计划简易版
- [高等教育]2017年西华大学攀枝花学院(联合办学)44
- [高等教育]最新整理超短爆笑英文小笑话大全
- 优秀教师继续教育学习心得体会
- 阳历到阴历的转换
- 留守儿童教育案例分析
- 华师17春秋学期《玩教具制作与环境布置
- 测速传感器新型安装装置的现场应用
- 人教版小学数学三年级下册第四单元
- 创业个人意向书
- 山东省潍坊市2012年高考仿真试题(三)
- [恒心][好卷速递]四川省成都外国语学校
- 多少人错把好转反应当成了病情加重处理
- 中外广播电视史复习资料整理
- 江苏省扬州市江都区宜陵镇中学2014-201
- 工程造价专业毕业实习报告
- 广西师范学院心理与教育统计
- aympkrq基于 - asp的博客网站设计与开
- 建筑业外出经营相关流程操作(营改增后
- 人治 德治 法治
- [精华篇]常识判断专项训练题库
- 中国共产党为什么要实行民主集中
- 小学数学第三册第一单元试卷(A、B、C




