教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 建筑文档 >

一次函数知识点总结与常见题型(3)

来源:网络收集 时间:2025-09-14
导读: 商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)、z(万元)(x,y,z都是整数)。 (1) 请用含x的代数式分别表示y和z; (2) 若商场预计每日的总利润为C(万元),且C满

商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)、z(万元)(x,y,z都是整数)。

(1) 请用含x的代数式分别表示y和z;

(2) 若商场预计每日的总利润为C(万元),且C满足19≤C≤19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?

3.优惠方案的设计

例4 某校校长暑假将带领该校市级“三好生”去北京旅游。甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待。”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠。”若全票价为240元。

(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式); (2)当学生数是多少时,两家旅行社的收费一样; (3)就学生数x讨论哪家旅行社更优惠。 练习

1.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元)。

(1)写出y(元)关于x(套)的函数解析式;并求出自变量x的取值范围;

(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?

第11页(共46页)

2.A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?

3.下表所示为装运甲、乙、丙三种蔬菜的重量及利润。某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只装一种蔬菜) 每辆汽车能装的吨数 每吨蔬菜可获利润(百元) 甲 2 5 乙 1 7 丙 1.5 4 (1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?

(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?

4.有批货物,若年初出售可获利2000元,然后将本利一起存入银行。银行利息为10%,若年末出售,可获利2620元,但要支付120元仓库保管费,问这批货物是年初还是年末出售为好?

第12页(共46页)

八 一次函数与方案设计问题

答案1解 (1)设安排生产A种产品x件,则生产B种产品是(50-x)件。由题意得

(1)?9x?4(50?x)?360 ?

3x?10(50?x)?290(2)?解不等式组得 30≤x≤32。

因为x是整数,所以x只取30、31、32,相应的(50-x)的值是20、19、18。

所以,生产的方案有三种,即第一种生产方案:生产A种产品30件,B种产品20件;第二种生产方案:生产A种产品31件,B种产品19件;第三种生产方案:生产A种产品32件,B种产品18件。

(2)设生产A种产品的件数是x,则生产B种产品的件数是50-x。由题意得

y=700x+1200(50-x)=-500x+6000。(其中x只能取30,31,32。)

因为 -500<0, 所以 此一次函数y随x的增大而减小, 所以 当x=30时,y的值最大。

因此,按第一种生产方案安排生产,获总利润最大,最大利润是:-500·3+6000=4500(元)。

本题是利用不等式组的知识,得到几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题。

2解 设上海厂运往汉口x台,那么上海运往重庆有(4-x)台,北京厂运往汉口(6-x)台,北京厂运往重庆(4+x)台,则总运费W关于x的一次函数关系式:

W=3x+4(6-x)+5(4-x)+8(4+x)=76+2x。

(1) 当W=84(百元)时,则有76+2x=84,解得x=4。 若总运费为8400元,上海厂应运往汉口4台。

?0?x?4(2) 当W≤82(元),则?

76?2x?82?解得0≤x≤3,因为x只能取整数,所以x只有四种可的能值:0、1、2、3。

答:若要求总运费不超过8200元,共有4种调运方案。

(3) 因为一次函数W=76+2x随着x的增大而增大,又因为0≤x≤3,所以当x=0时,函数W=76+2x有最小值,最小值是W=76(百元),即最低总运费是7600元。

此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台,运往重庆4台。

本题运用了函数思想得出了总运费W与变量x的一般关系,再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题。并求出了最低运费价。

?x?y?z?603x例3 解 (1)由题意得?,解得 y?35?x,z?25?.

22?5x?4y?2z?190(2) C=0.3x+0.5y+0.2z=-0.35x+22.5。

因为 19≤C≤19.7, 所以 9≤-0.35x+22.5≤19.7,解得 8≤x≤10。 因为 x,y,z是正整,且x为偶数,所以 x=8或10。

当x=8时,y=23,z=29,售货员分别为40人,92人,58人; 当x=10时,y=20,z=30,售货员分别为50人,80人,60人。

本题是运用方程组的知识,求出了用x的代数式表示y、z,再运用不等式和一次函数等知识解决经营调配方案设计问题。

3.销方案的设计

解 (1)y甲=120x+240, y乙=240·60%(x+1)=144x+144。 (2)根据题意,得120x+240=144x+144, 解得 x=4。 答:当学生人数为4人时,两家旅行社的收费一样多。 (3)当y甲>y乙,120x+240>144x+144, 解得 x<4。

当y甲4。

答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;本题运用了一次函数、方程、不等式等知识,解决了优惠方案的设计问题。

综上所述,利用一次函数的图象、性质及不等式的整数解与方程的有关知识解决了实际生活中许多的方案设计问题,

第13页(共46页)

如果学生能切实理解和掌握这方面的知识与应用,对解决方案问题的数学题是很有效的。

练习答案:

1. (1) y=15x+1500;自变量x的取值范围是18、19、20。 (2) 当x=20时,y的最大值是1800元。

2. 设A城化肥运往C地x吨,总运费为y元,则y=2x+10060 (0≤x≤200), 当x=0时,y的最小值为10060元。

3. (1) 应安排2辆汽车装运乙种蔬菜,6辆汽车装运丙种蔬菜。

(2) 设安排y辆汽车装运甲种蔬菜,z辆汽车装运乙种蔬菜,则用[20-(y+z)]辆汽车装运丙种蔬菜。 得 2y+z+1.5[20-(y+z)]=36,化简,得 z=y-12,所以 y-12=32-2y。 因为 y≥1, z≥1, 20-(y+z)≥1,所以 y≥1, y-12≥1, 32-2y≥1, 所以 13≤y≤15.5。 设获利润S百元,则S=5y+108,

当y=15时,S的最大值是183,z=y-12=3, 20-(y+z)=2。

4. (1) 当成本大于3000元时,年初出售好;

(2) 当成本等于3000元时,年初、年末出售都一样; (3) 当成本小于3000元时,年末出售好。

第14页(共46页)

一次函数专题训练

一、选择题

1.已知一次函数y?kx?k,若y随着x的增大而减小,则该函数图象经过( ) (A)第一、二、三象限 …… 此处隐藏:2733字,全部文档内容请下载后查看。喜欢就下载吧 ……

一次函数知识点总结与常见题型(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/438417.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)