美国大学生数学建模竞赛2013 获奖论文
美国大学生数学建模竞赛
1
Team#1111111Page1of22
TheUltimateBrowniePan
JiWang
FengHuang
CongliFan
UniversityofElectronicScienceandTechnologyofChina
Advisor:YongZhang
Summary
Makingdeliciousbrownieshasacloserelationshipwiththeshapeofbakingpans,howevertheproblemdepressingussomuchisthatwhenbakinginrectangularpans,theheatconcentratesonthecornercausingthefoodgetovercooked.Meanwhile,bakinginroundpansisnotefficientwithrespecttousingthespaceinarectangularoven.Nowtherefore,wedevelopoptimalmodelstoselectthebesttypeofpans.
Maximizeevendistributionofheatforthepans,itisnecessaryforustofigureouttheheatdistributionfordifferentshapes’pansprimarily.Basedonthesearchingresults,weuseTwo-DimensionalHeatConductionEquationtodescribethedistributionofheatacrosstheouteredgeofpans.Moreover,wesimulatetheheatdistributionofrectangular,roundandpolygonalpansbyusingthePEDtoolboxinMATLAB.
Forthecaseofthemaximumnumberofpansthatcanfitintheoven,weadoptRectangularPackingAlgorithmtosimplifytheproblem.Fromthiswedemonstrateageneralmethodforchoosingtheshapeofpanstomaximizethespaceutilization.Foranovenwithdeterminedradioofwidthtolength,itcancontainmorerectangularpansthanroundandpolygonalpans.
Inaddition,wesetupanindex definedasthestandarddeviationofthetemperatureinthedomainofpanstorepresenttheuniformityofheatdistribution.Andwedrawaconclusionthattheheatdistributionofroundpansisevenerthanregularpolygonalpans.Meanwhile,forrectangularpans,whentheratioofthelengthtothewidthisnearby1:1,itisaworsechoicethanroundpans.Butwhentheratioislesserthanthe1.0:1.8,therectangularpanscanbeabetterchoice.
Whentwofactorsabovearetakenintoaccount,wedevelopanoptimalmodeltodeterminethefinalbestbakingpan.Finally,wecometoaconclusionthattheoptimalshapeofpansvarieswithvaluesofW/Landp.
Finally,wecommentthestrengthsandweaknessesonourmodels.
KeywordsHeatConductionEquation,PEDtoolbox,RectangularPacking
美国大学生数学建模竞赛
Introduction
Whenbakinginarectangularpan,heatisconcentratedinthe4cornersandtheproductgetsovercookedatthecorners(andtoalesserextentattheedges).Inaroundpan,theheatisdistributedevenlyovertheentireouteredgeandtheproductisnotovercookedattheedges.So,heatcannotcirculateevenlyinsidethepan,leadingtotheboundarytemperaturehigherthaninner.
However,sincemostovensarerectangularinshape,usingroundpansisnotefficientwithrespecttousingthespaceinanoven.Thus,searchingforthemostsuitableshapeofthepansintheovenisverybeneficial.
Toexplorethemostsuitableshape,weshouldtaketwoaspectsintoconsideration:
1.Maximizenumberofpansthatcanfitintheoven.
2.Maximizeevendistributionofheatforthepan.
Optimizeacombinationofconditions1and2whereweightspand(1-p)areassignedtoillustratehowtheresultsvarywithdifferentvaluesofW/Landp.
MaximizingthenumberofpansinarectangularovenisequivalenttotheproblemthathowtoarraymoredifferentgeometricfigureswiththesameareaofAinarectangle.ThroughtheLeiHuangetc[4],weuseRectangularPackingAlgorithmtosolveit.
Tomaximizeevendistribution,figuringouttheheatdistributioninthepansfordifferentshapesiscrucial.ApreliminaryresearchofheatconductionhasbeencarriedoutbyFranklinC.daSilvaetc[1]:
TheTwo-DimensionalHeatConductionEquationisusuallyusedtodescribe
theheatconductionprogress.
PDEToolboxinMATLABcanbeusedtosimulatetheheatpartialdifferential
equation,especiallyfortheconductionequation.
Sowecanapplytheresearchabovetodevelopthemathematicmodelofheatdistributionandsimulateit.
VariablesandAssumption
Variables
Variable
u(x,y,t)
Q
Tw
Tf
S
ATable1.VariablesusedinthemodelDefinitionthetemperatureoftheanypointx,yofpanatthetimet( C)theheattransferringtothepanintheunitareaandunittime(W/m2)theouteredgetemperatureofthepan( C)theairtemperatureintheoven( C)theareaoftherectangularoven(cm2)theareaofthepan(cm2)
anindextodescribethedegreeoftheuniformityofheatdistribution
anindextomeasuretheoptimizenumberandtheevendistributioncomprehensively
美国大学生数学建模竞赛
GeneralAssumptions
Theheatcanonlytransfertothepanfromitsouteredgethroughtheair.Sincethefoodplacedonitpreventstheheatfromconductingtoit,thisisareasonable.Thetemperatureinovenisevensincetheairisflowing.Thatthereisonlyonekindofpansintheovens.Initiallytherearetworacksintheoven,evenlyspaced.Wesupposethatthe
temperatureandheatareequivalentandconstant,sowejustconsiderateonerackandtheotheroneisthesamewithit
Theratiooftheovenplane’swidthandlengthisW/L.
EverypansharesthesameareaofA.
Thedatawecitedinthemodelsaretrue.TheareaoftheovenisS 750cm2,andtheratiobetweenwidthandlengthisW/L 22:34.Moreover,theareaofpanisA 100cm2.[2]
TheMathematicalModelofHeatDistribution
Definitions
TheouteredgeandouteredgeandinnerofthepansareillustratedintheFigure1.
Figure1.Theillustrationofdifferentedges.
1.Overview
Firstly,weassumethatthetemperatureinsidetheovenisaconstantandthe
motionstateoftheinternalairisstable.Asaresult,weignoretheinfluencefromtheinternalenvironmentoftheovenwhenheatconductinginthepan.Theairflows
circularlyinsidetheoventoensurethesteadytemperature(intheoven).Accordingtothis,weassumedthatthereisnocertainflowdirectionofair,andtheflowvelocitytowardsanydirectionisconsistent.
Decomposetheairflowintothreedirectionsparallelingtothex,y,andz-axis.Whentakingthepanasathinplane,thereisnoheattransferringtothepanfromthez-axis’directionbecauseofthefoodplacedonit.Sotheprocessofheattransfercanbedescribedbyatwo-dimensionalheatconductionequation.
Theschematicdiagramoftwo-dimensionalheatconductionprocessshowsin
Figure2.
美国大学生数学建模竞赛
HeatdirectionConductionHeatConduction
direction
HeatConduction
direction
Figure2.Diagramoftwo-dimensionalheatconductionprocess
2.Two-dimensionalHeat-conductionEquation
- 基于PLC控制的航空电镀生产线自动输送
- 中考预测课内外文言文对比阅读2
- 2018-2023年中国商业智能(BI)产业市场
- 中国金融体制改革研究2011new
- 外窗淋水试验方案
- 精益生产(Lean Production)
- 学校安全事故处置和信息报送制度
- Chapter 5 Human Resources Management
- 【小学数学】人教版小学六年级上册数学
- 初中数学解题方法与技巧
- 山东省创伤中心建设与管理指导原则(试
- 函数与数列的极限的强化练习题答案
- 10分钟淋巴按摩消脂
- 网络应急演练预案
- 服装设计入门基础知识
- 初二数学分式计算题练习
- (人教新课标)高二数学必修5第二章 数列
- 最新自主创业项目
- 北京大学 无机化学课件 4第4章 配合物
- 贸易公司业务管理制度