光纤光缆制造工艺及设备(3)
1.在熔炼纤芯玻璃时,按某种规律掺入少量的较石英折射率n0稍高的材料,例如(GeO2)氧化锗或氧化磷P2O3、使芯层的折射率为n1,即n1>n0;
在制备包层玻璃时,同样,掺入少量的较石英折射率n0稍低的材料,例如氟F或氧化
硼B2O3等,使包层的折射率为n2并小于纯二氧化硅的折射率n0,即n2<n0;
这样掺杂熔炼出的光纤预制棒完全满足对光纤导光条件的要求:n1>n2。
2.熔炼纤芯玻璃时,掺杂方法与“1”中相同,n1>n0;而在制备包层时,只沉积二氧化
硅材料,不掺杂任何掺杂剂,得到纯SiO2玻璃层,其折射率为n2=n0,满足n1>n2=n0的光纤导光条件的要求。
3.熔炼纤芯玻璃时,只沉积二氧化硅材料,不掺杂任何掺杂剂,得到纯SiO2玻璃层,
其折射率为n1=n0,而制备包层玻璃时,与1.中沉积包层的方法相同,使包层的折射率为n2并小于纯二氧化硅的折射率n0,即n2<n0,从而满足n1=n0>n2的光纤导光条件的要求。
在光纤预制棒沉积过程中,如果掺杂试剂的含量过多,沉积层之间的玻璃热膨胀系数会
出现不一致,在最后的软化吸收熔缩成棒工艺中,棒内玻璃将会产生裂纹,影响预制棒的最终质量与合格率,所以必须严格控制掺杂剂的含量。
此外,使用MCVD法熔炼光纤预制棒时,由于最后一道工序----熔缩成棒时的温度过高,1800℃,使石英包皮管芯层中心孔内表面附近的掺杂剂分解升华,扩散(GeO2沸点 ?℃),最终导致预制棒中心的折射率下降,折射率分布曲线出现中心凹陷,如图5-2-5所示。
GeO+(5-10) x
图5-2-5光纤折射率分布曲线中心凹陷
分解反应的结果是使沉积层材料成份产生变化。GeO2挥发、分解,引起光纤中心凹陷,
此凹陷的深度和宽度由其中心孔附近失去的掺杂材料(GeO2)的多少来决定。这种现象对光纤的衰减和色散都有很大的影响,尤其对多模光纤的传输带宽影响是非常大的,仅此一项有时就把光纤宽度限制在了1GHZ km之内,对单模光纤的色散、带宽也会造成一定的影响。为消除或减少这种影响,一般,可采用二种方法解决:
1.补偿法:
所谓补偿法是在熔炼成实芯棒过程中,不间断的送入GeCl4饱和蒸气,以补偿高温升华、扩散造成的GeO2损失,从而达到补偿光纤预制棒中心位置折射率的降低问题。
使用此种方法会使光纤预制棒中金属锗的含量增高,导致瑞利散色损耗的增加。因此此
方法并不是最理想。
2.腐蚀法:
所谓腐蚀法是在熔缩成实芯棒时,向管内继续送入CF2Cl2、SF6等含氟饱和蒸汽和纯氧
气,使它们与包皮管中心孔表面失去部分GeO2的玻璃层发生反应,生成SiF4、GeF4,从而把沉积的芯层内表面折射率降低部分的玻璃层腐蚀掉,这样中心凹陷区会被减少或完成被消除掉,浓缩成棒后可大大改善光纤的带宽特性。同时,由于氯气具有极强的除湿作用,因此,利用CF2Cl2作蚀刻材料,具有蚀刻和除湿双重作用。腐蚀原理与化学反应式如下:
2CF2Cl2+O22+2Cl2(5-2-11) 2COF2+SiOSiF4+2CO22COF2+GeO 4+这个反应是不完全的,由于较高的温度和较高的氧浓度,平衡状态更多地向正向移动,如图5-2-6所示。
MCVD法自动化程度非常高,关键工艺参数均由计算机精确控制,包括:载运化学试剂
的纯氧流量,加热温度,试剂蒸发瓶的水浴温度,玻璃车床的转速,石英包皮管在高温下外径形变的检测等。MCVD法的优点是工艺相对比较简单,对环境要求不是太高,可以用于制造一切已知折射率剖面的光纤预制棒,但是由于反应所需热量是通过传导进入石英包皮管内部,热效率低,沉积速度慢,同时又受限于外部石英包皮管的尺寸,预制棒尺寸不易做大,从而限制了连续光纤的制造长度。目前,一棒可拉连续光纤长15km~25km。因此在生产效率、生产成本上难与OVD和VAD法竞争。为了克服MCVD法的上述缺点,人们又研究了采用套管制备大尺寸光纤预制棒的方法,即大棒套管技术,其方法是在沉积的光纤预制棒外,套一根大直径的石英管,然后,将它们烧成一体,石英包皮管和外套管一起构成光纤预制棒的内外包层,石英包皮管内沉积的玻璃全部作为芯层,这样制成的大棒预制棒,可增加连续拉
丝光纤的长度,一般可达几百公里。并可以提高光纤预制棒的生产效率。但是传统使用的石英包皮管及套管都是采用天然石英材料制成的天然石英管,天然石英管比起化学沉积层得到的包皮管的损耗相对要大,因此在制作单模光纤预制棒时,包层的大部分还必须采用沉积层来获得低损耗的光纤预制棒,加之天然石英管的尺寸本身在制造上也受到限制,因此采用大棒套管技术的MCVD法仍无法与OVD、VAD相抗衡。然而,近年来MCVD法又有了突破性的发展,这主要得益于合成石英管的开发成功。
5.2.2微波等离子体化学气相沉积法
微波等离子体化学气相沉积法,简称为PCVD法,如图5-2-9所示。1975年,由荷兰菲
利浦公司的Koenings先生研究发明。PCVD法与MCVD法工艺十分相似,都是采用管内气相沉积工艺和氧化反应,所用原料相同,不同之处在于反应机理的差别。PCVD法的反应机理是将MCVD法中的氢氧火焰加热源改为微波腔体加热源。将数百瓦~千瓦级的微波(f=2450MHz)功率送入微波谐振腔中,使微波谐振腔中石英包皮管内的低压气体受激产生等离子体,形成辉光放电,使气体电离,等离子体中含有电子、原子、分子、离子,是一种混合态,这些粒子在石英包皮管内远离热平衡态,电子温度可高达10000K,而原子、分子等粒子的温度可维持在几百度甚至是室温,是一种非等温等离子体,各种粒子重新结合,释放出的热量足以熔化蒸发低熔点低沸点的反应材料SiCl4和GeCl4等化学试剂,形成气相沉积层。
图5—2-9 PCVD法工艺示意图
PCVD法制备光纤预制棒的工艺有两个工序,即沉积和成棒。
沉积工艺是借助1Kpa的低压等离子体使注入石英包皮管内气体卤化物(SiCl4,GeCl4)
和氧气,在约1000℃下直接沉积一层所设计成份玻璃层,PCVD法每层沉积层厚度约1um,沉积层数可高达上千层,因此它更适合用于制造精确和复杂波导光纤,例如:带宽大的梯度型多模光纤和衰减小单模光纤。
成棒是将沉积好的石英玻璃棒移至成棒车床上,利用氢氧火焰的高温作用将其熔缩成实
心光纤预制棒,工艺示意图见5-2-9。
PCVD法工艺的优点,不用氢氧火焰加热沉积,沉积温度低于相应的热反应温度,石英
包皮管不易变形;控制性能好,由于气体电离不受包皮管的热容量限制,所以微波加热腔体可以沿石英包皮管作快速往复运动,沉积层厚度可小于1um,从而制备出芯层达上千层以上的接近理想分布的折射率剖面。以获得宽的带宽;光纤的几何特性和光学特性的重复性好,适于批量生产,沉积效率高,对SiCl4等材料的沉积效率接近100%,沉积速度快,有利于降低生产成本。
5.2.3.管外化学气相沉积法
管外化学气相沉积法,简称OVD法。于1974年,由美国康宁公司的Kcpron先生等研究
发明,1980年全面投入应用的一种光纤预制棒制作工艺技术。OVD法的反应机理为火焰水解,即所需的玻璃组份是通过氢氧焰或甲烷焰水解卤化物气体产生“粉尘”逐渐地沉积而获得,反应原理和化学反应方程式如下:
芯层:
SiCl4(g)+2H22GeCl4(g)+2H22
或 SiCl4(g)+H22(s)+2HCl+Cl2GeCl4(g)+H2
2(s)+2HCl+Cl2(g)
包层:
Sicl4(g)+H222BCl3(g)+3H22O3火焰水解反应:
相关推荐:
- [幼儿教育]【完整版】2019-2025年中国药物发现外
- [幼儿教育]2018-2019年初中信息技术广东初一竞赛
- [幼儿教育]最新外研版(一起)小学英语五年级上册《
- [幼儿教育]农业推广与创新管理专业 -中农大毕业论
- [幼儿教育]2017-2022年中国更年期用药行业市场深
- [幼儿教育]数学1.1.2第1课时棱柱、棱锥和棱台的结
- [幼儿教育]二年级群文阅读课例欣赏
- [幼儿教育]2010-2015年中国保险行业投资分析及深
- [幼儿教育]厄运打不垮的信念第一课时
- [幼儿教育]巧用文本,让表达在言语中绽放论文
- [幼儿教育]中学生百科知识竞赛题及答案
- [幼儿教育]八大菜系英文简介
- [幼儿教育]中国男装牛仔裤市场发展研究及投资前景
- [幼儿教育]远程数字视频监控系统在银行的应用
- [幼儿教育]光纤光缆制造工艺及设备
- [幼儿教育]国家安全法试题及答案
- [幼儿教育]2011高中提前招生及竞赛试题(物理卷1)
- [幼儿教育]宁夏第三产业房地产业、科学研究和技术
- [幼儿教育]中兴通讯 ME3000模块用户硬件设计手册_
- [幼儿教育]紫外线灯管的辐照强度问题
- 苏联东欧剧变的原因和历史教训浅析
- 人工智能导论实验报告(学生)
- 思科ITE章考试原题及答案
- 《学习雷锋好榜样》主题班会教案
- 加油站建设项目安全评价报告
- 剖析社保卡管理系统
- 2017-2018年影视剧新媒体版权运营行业
- 2017-2018学年四川省成都市高一上学期
- 2019最新高中数学 第三章 3.2.1 几类不
- 2011-2015年中国基酸市场调查及行业前
- 人教版新课标选修八Unit 1 课件Warming
- 郭溪燎原小学辅导学生记录表
- 教师资格证统考综合素质写作秘笈
- 国外校园绿色建筑研究方向与建设实践
- 15.1 动物运动的方式 课件(北师大版八
- 民用飞机空调系统
- 长安侠文化传统与唐诗的任侠主题
- 《中国近现代史纲要》名词解释
- 11金本《保险学概论》复习资料
- 民用建筑机电安装工程专业施工图图纸会