教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 文库大全 > 高中教育 >

13.4 课题学习 最短路径问题

来源:网络收集 时间:2026-01-30
导读: 八年级 上册 13.4 课题学习 最短路径问题 课件说明 本节课以数学史中的一个经典问题——“将军饮 马问题”为载体开展对“最短路径问题”的课题研 究,让学生经历将实际问题抽象为数学的线段和最 小问题,再利用轴对称将线段和最小问题转化为 “两点之间,线

八年级

上册

13.4 课题学习 最短路径问题

课件说明 本节课以数学史中的一个经典问题——“将军饮 马问题”为载体开展对“最短路径问题”的课题研 究,让学生经历将实际问题抽象为数学的线段和最 小问题,再利用轴对称将线段和最小问题转化为 “两点之间,线段最短”(或“三角形两边之和大 于第三边”)问题.

课件说明 学习目标: 能利用轴对称解决简单的最短路径问题,体会图形 的变化在解决最值问题中的作用,感悟转化思想. 学习重点: 利用轴对称将最短路径问题转化为“两点之间,线 段最短”问题.

引入新知

引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”.

探索新知问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?

BA l

探索新知精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”. 你能将这个问题抽象为数学问题吗?

BA l

探索新知追问1 这是一个实际问题,你打算首先做什么?

将A,B 两地抽象为两个点,将河l 抽象为一条直 线. · A· lB

探索新知追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?

(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;

探索新知追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?

(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点.设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图). B AC l

探索新知问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? B · 追问1 对于问题2,如何 A · 将点B“移”到l 的另一侧B′ l 处,满足直线l 上的任意一点 C,都保持CB 与CB′的长度 相等?

探索新知问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的

什么位置时,AC 与CB 的和最小? B · A 追问2 你能利用轴对称的 · 有关知识,找到上问中符合条 l 件的点B′吗?

探索新知问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? B 作法: · A (1)作点B 关于直线l 的对称 点B′; (2)连接AB′,与直线l 相交 于点C. 则点C 即为所求.·

C

l

B′

探索新知问题3 你能用所学的知识证明AC +BC最短吗?

·

A

·

B

C

l

B′

探索新知问题3 你能用所学的知识证明AC +BC最短吗?

证明:如图,在直线l 上任取一点C′(与点C 不 重合),连接AC′,BC′,B′C′. B 由轴对称的性质知, · A BC =B′C,BC′=B′C′. · ∴ AC +BC C′ l = AC +B′C = AB′, C AC′+BC′ = AC′+B′C′. B′

探索新知问题3 你能用所学的知识证明AC +BC最短吗?

证明:在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.

·

A

·

B

C′ C

l

B′

探索新知追问1 证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么? B · A 若直线l 上任意一点(与点 · C 不重合)与A,B 两点的距离 C′ l 和都大于AC +BC,就说明AC + C BC 最小. B′

探索新知追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的? B

·

A

·

C′ C

l

B′

运用新知练习 如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径. C 山

QP

河岸

A

大桥

B

运用新知基本思路: 由于两点之间线段最短,所以首先可连接PQ,线 段PQ 为旅游船最短路径中的必经线路.将河岸抽象为 一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到 C 一点R,使PR与QR 的和最 Q 河岸 山 小”. P A大桥

B

…… 此处隐藏:463字,全部文档内容请下载后查看。喜欢就下载吧 ……
13.4 课题学习 最短路径问题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wenku/129456.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)