大连理工大学大学物理作业及答案详解1-22(3)
?U外??E外?dl??E外?dr?????rr???r2??Rdr??R2?R2??dr??r?r?0r2?0r?0r2
(r>R)
U球面??E外?dr?R????R ?0U内??E内?dr?U球面?U球面注意:零势面是无穷远。
r?R??6.电荷Q均匀分布在半径为R的球体内,试求离球心r处?r?R?的电势。 解:电荷体密度
??Q43?R3
由于电场分布具有球对称性, 利用高斯定理可得 Q内Q r??? ? r?r?r4??0r24??0r24??0R3 (r
?Q rQQ22dr?dr?[3R?r]3?r4??R3R4??r28??0R00?2?5?27.(不用看!)一圆盘,半径R?8.0?10m,均匀带电,面密度??2.0?10C?m
。 ?1?求轴线上任一点的电势(该点与盘心的距离为x)
??R?2?由场强与电势梯度的关系,求该点电场强度。
?3?计算x?6.0?10?2m的电势和场强。
解:(1)把圆盘无限分割成许多圆环,其中任一圆环半径为R,宽为dR,该圆环上的电荷量为
dq??dS???2?RdR
////此圆环可以被看作无限细带电圆环,在P点产生的电势为
2?dS??2?R/dR/ r?R/?x2 dU???4??0r4??0r4??0r
dq由电势叠加原理,有
UP??dU????R0?R/dR/??2?0r2?0?RR/dR/R/?x220??[R2?x2?x] 2?0(2)由对称性知,电场沿x方向,
?dU??xE?Exi??i?[1?]i
22dx2?0R?x??1.13?106V/m。x?6.0?10?2m,U?4.5?104V E?4.5?105(V/m) 2?08.半径为R的圆弧ab,所对圆心角?,如图所示,圆弧均匀带正电,电荷线密度为?。
(3)
试求圆弧中心处的电场强度和电势。
解:无限分割带电圆弧为许多电荷元,其中任一电荷元dq??dl??Rd?可看成点电荷,它在O点产生的场强为dE?dqdqdU?,电势为,
4??0R4??0R2//dq/以x轴为对称轴,选另一电荷元dq与dq对称,dq?dq,则有 dE?, 24??0R//由于对称性 dEy?dEy?0,dEx?dEx?2dEx??d?/(2??0R)
/O点总的场强和电势为所有点电荷在该点产生的场强和电势的叠加。
??d???EOx?2?dEx?2?dEcos???2cos??sin
02??R2??0R20??2?d???????? E?sini Uo?2?dU??02??04??02??0R2
??9.?E?dl?0表明静电场具有什么性质?
L答:静电场是无旋场。静电场中,任意两点之间电场强度的线积分与路径无关。静电场中,任意闭合回路电场强度的线积分为零。可以引入电势的概念。 10.电势为零的空间场强一定为零吗?
答:不一定。电势的零点是人为规定的,有意义的是电势差。电势差是电场强度的线积分,线积分为零,不等于电场强度为零。 反例:如果取无限远处电势为零,则两个等量异号电荷的中垂面上各点电势为0,电场不为0(除电荷连线中点)。
?再如,均匀电场E中,连线垂直于电场强度方向的两点a和b,电势差为零,但电
场强度不为零。
11.电场强度为零的空间电势一定为零吗? 答:不一定。电势的零点是人为规定的。
如,均匀带电球面内部各点场强为0,电势不为0。
但是,电场强度为零,线积分一定为零,空间各点电势相等,电势差为零。例如,处于静电平衡的导体内,电场强度为零,导体是等势体。
作业4
1.如图所示,两个同心金属球壳,它们离地球很远,内球壳用细导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。 A. 不带电荷
B.带正电 C.带负电荷
D.外表面带负电荷,内表面带等量正电荷
答案:【C】
解:如图,由高斯定理可知,内球壳内表面不带电。否则内球壳内的静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。电场
强度由内球壳向外的线积分到无限远,不会为零。即内球壳电势不为零。这与内球壳接地(电势为零)矛盾。因此,内球壳外表面一定带电。
设内球壳外表面带电量为q(这也就是内球壳带电量),外球壳带电为Q,则由高斯定理可知,外球壳内表面带电为?q,外球壳外表面带电为q?Q。这样,空间电场强度分布 …… 此处隐藏:88字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [高等教育]公司协助某村精准扶贫工作总结.doc
- [高等教育]高二生物知识点总结(全)
- [高等教育]苏教版数学三年级下册《解决问题的策略
- [高等教育]仪器分析课程学习心得
- [高等教育]2017年五邑大学数学与计算科学学院333
- [高等教育]人教版七年级下册语文第四单元测试题(
- [高等教育]2018年秋七年级英语上册Unit7Howmuchar
- [高等教育]2017年八年级下数学教学工作小结
- [高等教育]湖南省怀化市2019届高三统一模拟考试(
- [高等教育]四年级下册科学_基础训练及答案教材
- [高等教育]城郊煤矿西风井管路伸缩器更换施工安全
- [高等教育]昆八中20182019学年度上学期期末考试
- [高等教育]项目部各类人员任命书
- [高等教育]上市公司经营水务产业的模式
- [高等教育]人教版高二化学第一学期第三章水溶液中
- [高等教育]【中考物理第一轮复习资料】四.压强与
- [高等教育]金坑水电站报废改建工程机电设备更新改
- [高等教育]高中生物教学工作计划简易版
- [高等教育]2017年西华大学攀枝花学院(联合办学)44
- [高等教育]最新整理超短爆笑英文小笑话大全
- 优秀教师继续教育学习心得体会
- 阳历到阴历的转换
- 留守儿童教育案例分析
- 华师17春秋学期《玩教具制作与环境布置
- 测速传感器新型安装装置的现场应用
- 人教版小学数学三年级下册第四单元
- 创业个人意向书
- 山东省潍坊市2012年高考仿真试题(三)
- [恒心][好卷速递]四川省成都外国语学校
- 多少人错把好转反应当成了病情加重处理
- 中外广播电视史复习资料整理
- 江苏省扬州市江都区宜陵镇中学2014-201
- 工程造价专业毕业实习报告
- 广西师范学院心理与教育统计
- aympkrq基于 - asp的博客网站设计与开
- 建筑业外出经营相关流程操作(营改增后
- 人治 德治 法治
- [精华篇]常识判断专项训练题库
- 中国共产党为什么要实行民主集中
- 小学数学第三册第一单元试卷(A、B、C




