概率论与数理统计专业学习资料(4)
(2)X是连续型随机变量
先利用X的概率密度fX(x)写出Y的分布函数FY(y),再利用变上下限积分的求导公式求出fY(y)。
?2?(3x?1),0?x?1例2.19:已知随机变量X~f(x)??5,求Y?lnX的密度函数fY(y)。
?0,其他?
第二节 练习题
1、常见分布
例2.20:一个袋中有5只球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3个球中的最大号
码,试求X的概率分布。
例2.21:设非负随机变量X的密度函数为f(x)=A x7e?x22,x>0,则A= 。
例2.22: f1(x)?f2(x)是概率密度函数的充分条件是: (1)f1(x),f2(x)均为概率密度函数 (2)0?f1(x)?f2(x)?1
例2.23:一个不懂英语的人参加GMAT机考,假设考试有5个选择题,每题有5个选项(单选),试求:此人答对3题或者3题以上(至少获得600分)的概率?
例2.24:设随机变量X~U(0,5),求方程4x?4Xx?X?2?0有实根的概率。 例2.25:设随机变量X的概率密度为
2?1?3,??f(x)??2,?9???0,其使得P(X?k)?x?[0,1]x?[3,6] 其他。
2,则k的取值范围是 3 例2.26:已知某种电子元件的寿命(单位:小时)服从指数分布,若它工作了900小时而未损坏的概率是
e?0.9,则该种电子元件的平均寿命是
A. 990小时 B. 1000小时 C. 1010小时 D. 1020小时
例2.27:设随机变量X的概率密度为:?(x)?1?|x|e,(???x???)则其分布函数F(x)是 2?1xe,??2(A)F(x)?????1,x?0,
x?0.- 16 -
?1x?2e,?(B)F(x)???1?x?1?2e??1?x?1?2e,?(C)F(x)???1,???1?x?2e,??1(D)F(x)??1?e?x,?2???1,x?0,
x?0.x?0,
x?0..x?0,0?x?1, x?1.x??
[
]
例2.28:X~N(1,4),Y~N(2,9),问P(X≦-1)和P(Y≧5)谁大? 例2.29:X~N(μ,σ),μ≠0,σ>0,且P(
2
?1??)=,则α=?
22、函数分布
例2.30:设随机变量X具有连续的分布函数F(x),求Y=F(X)的分布函数F(y)。 (或证明题:
设X的分布函数F(x)是连续函数,证明随机变量Y=F(X)在区间(0,1)上服从均匀分布。) 例2.31:设随机变量X的分布函数为F(x),则Y=-2lnF(X)的概率分布密度函数fY(y)= . 例2.32:设X~U??????,?,并且y=tanx,求Y的分布密度函数f(y)。 22??例2.33:设随机变量X服从指数分布,则随机变量Y=min{X, 2}的分布函数
(A)是连续函数 (B)至少有两个间断点 (C)是阶梯函数 (D)恰好有一个间断点
第三章 二维随机变量及其分布
第一节 基本概念
1、二维随机变量的基本概念
(1)二维离散型随机变量联合概率分布及边缘分布
- 17 -
如果二维随机向量?(X,Y)的所有可能取值为至多可列个有序对(x,y)时,则称?为离散型随机量。理解:(X=x,Y=y)≡(X=x∩Y=y)
设?=(X,Y)的所有可能取值为(xi,yj)(i,j?1,2,?),且事件{?=(xi,yj)}的概率为pij,,称
P{(X,Y)?(xi,yj)}?pij(i,j?1,2,?)
为?=(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示: Y X y1 p11 p21 y2 p12 p22 ? ? ? ? ? yj p1j p2j ? ? ? pi2 p12 p22 x1 x2 ? xi ? pi1 ? ? ? ? ? pi2 ? p2j ? p21 ? p22 ? p2j ? ? ? 1 这里pij具有下面两个性质: (1)pij?0(i,j=1,2,?); (2)
??ijpij?1.
对于随机向量(X,Y),称其分量X(或Y)的分布为(X,Y)的关于X(或Y)的边缘分布。上表中的最后一列(或行)给出了X为离散型,并且其联合分布律为
P{(X,Y)?(xi,yj)}?pij(i,j?1,2,?),
则X的边缘分布为 Pi??P(X?xi)?Y的边缘分布为 P?i?P(Y?yi)??jpij(i,j?1,2,?);
?ipij(i,j?1,2,?)。
例3.1:二维随机向量(X,Y)共有六个取正概率的点,它们是:(1,-1),(2,-1),(2,0),2,2),(3,1),(3,2),并且(X,Y)取得它们的概率相同,则(X,Y)的联合分布及边缘分布为 Y X 1 2 3 p2j -1 0 0 1 0 0 2 0 p12 1 61 60 1 60 1 31 61 61 61 61 61 31 61 21 31
(2)二维连续型随机向量联合分布密度及边缘分布
对于二维随机向量??(X,Y),如果存在非负函数f(x,y)(???x???,???y???),使对任意一个其邻边
- 18 -
分别平行于坐标轴的矩形区域D,即D={(X,Y)|a P{(X,Y)?D}???f(x,y)dxdy, D则称?为连续型随机向量;并称f(x,y)为?=(X,Y)的分布密度或称为X和Y的联合分布密度。 分布密度f(x,y)具有下面两个性质: (1) f(x,y)?0; (2) ??????????f(x,y)dxdy?1. ????一般来说,当(X,Y)为连续型随机向量,并且其联合分布密度为f(x,y),则X和Y的边缘分布密度为 fX(x)??注意:联合概率分布→边缘分布 例3.2:设(X,Y)的联合分布密度为 ??f(x,y)dy,fY(y)??f(x,y)dx. ???Ce?(3x?4y),?f(x,y)???0,?试求:(1)常数C; (2)P{0 (3)X与Y的边缘分布密度fX(x),fY(y). x?0,y?0, 其他(3)条件分布 当(X,Y)为离散型,并且其联合分布律为 P{(X,Y)?(xi,yj)}?pij(i,j?1,2,?), 在已知X=xi的条件下,Y取值的条件分布为 P(Y?yj|X?xi)?pijpi?, 其中pi?, p?j分别为X,Y的边缘分布。 当(X,Y)为连续型随机向量,并且其联合分布密度为f(x,y),则在已知Y=y的条件下,X的条件分布密度为 f(x|y)?在已知X=x的条件下,Y的条件分布密度为 f(x,y) fY(y)f(y|x)?f(x,y) fX(x)其中fX(x)?0,fY(y)?0分别为X,Y的边缘分布密度。 例3.3: 设二维随向量(X,Y)的联合分布为 X Y 2 5 0.4 0.15 0.30 - 19 - 0.8 0.05 0.12 8 0.35 0.03 求 (1)X与Y的边缘分布; (2)X关于Y取值y1=0.4的条件分布; (3)Y关于X取值x2=5的条件分布。 (4)常见的二维分布 ①均匀分布 设随机向量(X,Y)的分布密度函数为 ?1?S?Df(x,y)???0,??(x,y)?D 其他其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。 例如图3.1、图3.2和图3.3。 y 1 D1 O 1 x 图3.1 y 1 D2 O 2 x 1 图3.2 y d D3 c O a b x 图3.3 例3.4: 设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中 D?{(x,y):|x?y|?1,|x?y|?1}, 求X的边缘密度fX(x) 画线观察积分上下限。 - 20 -
相关推荐:
- [政务民生]2013年公共基础知识热点问题(七)
- [政务民生]检验检测机构资质认定评审准则及释义20
- [政务民生]关于印发重庆市房屋建筑和市政基础设施
- [政务民生]1、隧道洞身开挖支护施工技术交底书
- [政务民生]2015年山东省17地市中考语文试题分类汇
- [政务民生]2-高级会计师资格考试和评审流程图
- [政务民生]2018版中国清分机行业发展分析及前景策
- [政务民生]新课改高中政治探究
- [政务民生]2018-2024年中国新型组合房屋行业投资
- [政务民生]2015年上海市春季高考数学模拟试卷五
- [政务民生]灌砂法及环刀法测压实度(带计算过程)
- [政务民生]运筹学实验2求解非线性规划
- [政务民生]劝学、逍遥游默写(教师卷)
- [政务民生]《运筹学》 - 期末考试 - 试卷A - 答案
- [政务民生]八年级英语下册 Module 6 Hobbies测试
- [政务民生]2019年宪法知识竞赛试题库100题(含答
- [政务民生]自动化英文文献翻译
- [政务民生]公文格式实施细则
- [政务民生]高一地理上册课堂跟踪练习题6
- [政务民生]会计继续教育习题及答案
- 第三章 无约束最优化方法
- 泛读教程第三册答案
- 魏晋南北朝文学
- 幂的运算复习题
- 城市环境问题的成因与治理策略_以社会
- 钢结构行业产业链及竞争分析研究
- 新型热塑性弹性体增韧聚丙烯的研究
- 中国旅游地理B卷试题及答案
- (苏教版)五年级数学上册第三单元测试卷
- 不稳定性心绞痛诊断与治疗
- 俞氏国际后勤职能部门绩效考核办法
- GB7258-2017新标准考试题含答案
- 小学生汉字听写比赛活动方案
- 1.3《平抛运动》学案 教科版必修2
- 2011香港特别行政区公务员考试复习资料
- 考虑水力条件变化的城市给水管网可靠性
- 表面活性剂在油田开发和生产中的应用
- ITT内部培训资料-FI端吸泵的介绍
- 文明守纪,从我做起学生发言稿
- 初中读《聊斋志异》心得体会800字范文




