教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 政务民生 >

概率论与数理统计专业学习资料(3)

来源:网络收集 时间:2026-01-24
导读: ?Ax?F(x)??1?x??0其中A是一个常数,求 (1) 常数A (2)P(1?X?2) (3)连续型随机变量的密度函数 x?0x?0 定义 设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有 F(x)??f(x)dx??x, 则称X为连

?Ax?F(x)??1?x??0其中A是一个常数,求

(1) 常数A

(2)P(1?X?2)

(3)连续型随机变量的密度函数

x?0x?0

定义 设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有

F(x)??f(x)dx??x,

则称X为连续型随机变量。f(x)称为X的概率密度函数或密度函数,简称概率密度。f(x)的图形是一条曲线,称为密度(分布)曲线。

由上式可知,连续型随机变量的分布函数F(x)是连续函数。 所以,

P(x1?X?x2)?P(x1?X?x2)?P(x1?X?x2)?P(x1?X?x2)?F(x2)?F(x1)

密度函数具有下面4个性质: 1° f(x)?0。 2°

?????f(x)dx?1????。

的几何意义;在横轴上面、密度曲线下面的全部面积等于1。

x2F(??)??f(x)dx?1如果一个函数f(x)满足1°、2°,则它一定是某个随机变量的密度函数。 3° P(x1?X?x2)=F(x2)?F(x1)=

x1?f(x)dx。

4° 若f(x)在x处连续,则有F?(x)?f(x)。

P(x?X?x?dx)?f(x)dx

它在连续型随机变量理论中所起的作用与P(X?xk)?pk在离散型随机变量理论中所起的作用相类似。

E??,??A?P(A),(古典概型,五大公式,独立性)

X(?)?X(?)?x?F(x)?P(X?x)

对于连续型随机变量X,虽然有P(X?x)?0,但事件(X?x)并非是不可能事件?。

x?hP(X?x)?P(x?X?x?h)??f(x)dx

x令h?0,则右端为零,而概率P(X?x)?0,故得P(X?x)?0。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

例2.6:随机变量X的概率密度为f(x),f(x)???Ax,0?x?1?0,其他- 11 -

,求A和F(x)。

例2.7:随机变量X的概率密度为

?13?x?xe2 x?0f(x)??2

? 0 x?0?求X的分布函数F(x)和P(?2?X?4).

22、常见分布

①0-1分布

P(X=1)=p, P(X=0)=q

例如树叶落在地面的试验,结果只能出现正面或反面。

②二项分布

在n重贝努里试验中,设事件A发生的概率为p。事件A发生的次数是随机变量,设为X,则X可能取值为

0,1,2,?,n。

P(X?k)?Pn(k)?Cnpkqn?k, 其中q?1?p,0?p?1,k?0,1,2,?,n,

则称随机变量X服从参数为n,p的二项分布。记为X~B(n,p)。

kX|n 2kn?12n?2kn?knP(X?k)q,npq,Cpq,?,Cpq,?,pnn容易验证,满足离散型分布率的条件。 当n?1时,P(X?k)?pqk1?k,k?0.1,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

例2.8:某人进行射击,设每次射击的命中率为0.001,若独立地射击5000次,试求射中的次数不少于两次的概率。

③泊松分布

设随机变量X的分布律为

P(X?k)??kk!e??,??0,k?0,1,2?,

则称随机变量X服从参数为?的泊松分布,记为X~?(?)或者P(?)。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

如飞机被击中的子弹数、来到公共汽车站的乘客数、机床发生故障的次数、自动控制系统中元件损坏的个数、某商店中来到的顾客人数等,均近似地服从泊松分布。

例2.9:某人进行射击,设每次射击的命中率为0.001,若独立地射击5000次,试求射中的次数不少于两次的概率,用泊松分布来近似计算。

④超几何分布

- 12 -

kn?kk?0,1,2?,lCM?CN?MP(X?k)?, nl?min(M,n)CN随机变量X服从参数为n,N,M的超几何分布。

例2.10:袋中装有α个白球及β个黑球,从袋中任取a+b个球,试求其中含a个白球,b个黑球的概率(a?α,b?β)。

abC?C?a?bC???(非重复排列)

例2.11:袋中装有α个白球及β个黑球,从袋中连续地取a+b个球(不放回),试求其中含a个白球,b个黑球的概率(a?α,b?β)。

abC?C?Paa??bbPa?b???(非重复排列)

例2.12:袋中装有α个白球及β个黑球,从袋中连续地取a+b个球(放回),试求其中含a个白球,b个黑球的概率(a?α,b?β)。(

⑤几何分布

????)a(????a)bCa?b(重复排列)

P(X?k)?qk?1p,k?1,2,3,?,其中p?0,q=1-p。

随机变量X服从参数为p的几何分布。

例2.13:5把钥匙,只有一把能打开,如果某次打不开不扔掉,问以下事件的概率? ①第一次打开;②第二次打开;③第三次打开。

⑥均匀分布

设随机变量X的值只落在[a,b]内,其密度函数f(x)在[a,b]上为常数k,即

a?x?b

?k,f(x)???0, 其他,

1, b?a则称随机变量X在[a,b]上服从均匀分布,记为X~U(a,b)。

其中k=

分布函数为

0, x

F(x)??f(x)dx???x

1, x>b。

当a?x1

x1x1P(

例2.14:设电阻R是一个均匀在900~1100Ω的随机变量,求R落在1000~1200Ω之间的概率。

x1?X?x2)??f(x)dx??x2x2x?x11dx?2b?a。 b?a- 13 -

⑦指数分布

设随机变量X的密度函数为 ?e??x, x?0, f(x)?

0, x?0,

其中??0,则称随机变量X服从参数为?的指数分布。 X的分布函数为 ??x1?e, x?0,

F(x)?

0, x<0。

????2?x记住几个积分:

???xe0?xdx?1, ?xedx?2, ?xn?1e?xdx?(n?1)!

00???(?)? ?x??1e?xdx, ?(??1)???(?)

05432考研论坛(bbs.5432.net)友情提供下载~~

例2.15:一个电子元件的寿命是一个随机变量X。它的分布函数F(x)的含义是,该电子元件的寿命不超过x的概率。通常我们都假定电子元件的寿命服从指数分布。试证明服从指数分布的随机变量具有“无记忆性”:

P(x0?X?x0?x|X?x0)?P(X?x)。

⑧正态分布

设随机变量X的密度函数为

2??其中?、??0为常数,则称随机变量X服从参数为?、?的正态分布或高斯(Gauss)分布,记为X~N(?,?2)。 f(x)具有如下性质:

1° f(x)的图形是关于x??对称的; 2° 当x??时,f(?)?f(x)?1e?(x??)22?2, ???x???,

12??为最大值;

3° f(x)以ox轴为渐近线。

特别当?固定、改变?时,f(x)的图形形状不变,只是集体沿ox轴平行移动,所以?又称为位置参数。当?固定、改变?时,f(x)的图形形状要发生变化,随?变大,f(x)图形的形状变得平坦,所以又称?为形状参数。

若X~N(?,?),则X的分布函数为

2F(x)?12???x??e?(t??)22?2dt。。

参数??0、??1时的正态分布称为标准正态分布,记为X~N(0,1),其密度函数记为

?(x)?1?2e2?,???x???,

- 14 -

x2分布函数为

。?(x)是不可求积函数,其函数值,已编制成表可供查用。

φ(x)和Φ(x)的性质如下:

1° φ(x)是偶函数,φ(x)=φ(-x);

???(x)12??xe?t22dt2° 当x=0时,φ(x)=

12?为最大值;

3° Φ(-x)=1-Φ(x)且Φ(0)=如果X~N(?,?),则

21。 2X???~N(0,1)。

所以我们可以通过变换将F(x)的计算转化为?(x)的计算,而?(x)的值是可以通过查表得到的。

?x????x1???P(x1?X?x2)???2?????。

??????分位数的定义。

例2.16 …… 此处隐藏:2230字,全部文档内容请下载后查看。喜欢就下载吧 ……

概率论与数理统计专业学习资料(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/447244.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)