教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 资格考试 >

高等数学(上册)第三章教案(4)

来源:网络收集 时间:2026-01-27
导读: ?例8 求 ??2020exsinxdx. ???20x解 ?esinxdx?x?20sinxd(e?)esinx??0xx2eco xsdx??20??x0?x?e2??2cosxd(e)?e2?ecosx?2??2exsinxdx 0?0?e?1??2exsinxdx, ?故有 例9 求 ?201esinxdx?(e2?1). 2x???0exdx. 解 先用换元法

?例8 求

??2020exsinxdx.

???20x解

?esinxdx?x?20sinxd(e?)esinx??0xx2eco xsdx??20??x0?x?e2??2cosxd(e)?e2?ecosx?2??2exsinxdx

0?0?e?1??2exsinxdx,

?故有 例9 求

?201esinxdx?(e2?1).

2x???0exdx.

解 先用换元法.令t?x,则x?t2,dx?2tdt

?x0?e再用分部积分法计算:

dx?2?tetdt.

0??因此 例10 设

?0tetdt??td(et)?tet0?0?10??etdt?e?et0?10?1.

??0exdx?2?tetdt?2?1?2.

bbaaf(x)在[a,b]上可导,且f(a)?f(b)?0,?f2(x)dx?1,试求?xf(x)f?(x)dx.

?baxf(x)f?(x)dx??xf(x)df(x)?ab1b2xdf(x) ?a211?0??1??.

22121b2b?xf(x)a??f(x)dx22a课后作业及小结:

1、学习了定积分的分部积分法与换元法的概念 2、熟练运用积分方法 作业:P193.1,3

第七节:定积分的几何应用与物理应用

1、平面图形的面积——直角坐标系下平面图形的面积 (1)当

f(x)?0时,由曲线y?f(x),直线x?a,x?b及x轴所围成的曲边梯形。

b 面积为: (2)若

A??f(x)dx

abbf(x)?g(x),由曲线y1?f(x),y2?g(x),直线x?a,x?b所围成的图形

A??[f(x)?g(x)]dx??(y1?y2)dx

aadd 面积为: (3)若?(y)??(y),由曲线x1??(y),x2??(y),直线y?c,y?d所围成的图形 A??[?(y)??(y)]dy??(x1?x2)dy

cc 面积为:

求平面图形面积的步骤:

(1)根据问题的要求,作出简单的图形,选取合适的变量(x或

bby)作为积分变量,并确定其变化范围[a,b](或[c,d])。

(2)写出积分表达式: 例1 求曲线

A??(y1?y2)dx??[f(x)?g(x)]dx,然后进行计算。

aay?x2与y2?x所围成图形的面积。

解:解方程组

?y?x2 得两条曲线的交点为 (0,0)和(1,1),选取x为积分变量,其变化区间为[0,1],则面积为 ?2?y?x?321?12A??(y1?y2)dx??(x?x)dx??x3?x3??

3?0300?2111若取

y为积分变量,其变化区间也是[0,1],且有

11A??(x1?x2)dy??(y?y2)dy?001

3例2 求抛物线

y2?2x与直线y?x?4所围成图形的面积。

?y2?2x 解: 解方程组?得交点(2,?2)和(8,4),取y为积分变量,其变化区间为[?2,4],则

?y?x?4?y2y2y3?A??(x1?x2)dy??(y?4?)dy???4y???18

26??2?2?2?2 若取x为积分变量,其变化区间为[0,8],在[0,2]上有

22444A1??(y1?y2)dx??[2x?(?2x)]dx

00在[2,8]上有

88A2??(y1?y2)dx??[2x?(x?4)]dx

22A?A1?A2?18.由此可见,积分变量取得好,计算则简单,反之较麻烦。

3例3 求曲线y?x与直线y?x所围成图形的面积。

所求面积为: 解:解方程

0?y?x3,得交点(?1,1),(0,0),(1,1),取x为积分变量 ??y?x1014224????xxxx111 33则 A?(x?x)dx?(x?x)dx?????????????4224442???1??0?102、空间立体的体积

(1) 旋转体的体积

旋转体——平面图形绕平面上一条直线旋转一周而成的立体(如:球、圆柱、圆锥等),直线为旋转轴。 旋转轴为x轴的旋转体体积:若平面图形由曲线体积为:

y?f(x),直线x?a,x?b(a?b)及x轴围成。则所求旋转体

V???ydx???[f(x)]2dx

2aabby?x2与直线x?1及x轴所围成图形绕x轴旋转一周后的旋转体体积。 解: 抛物线与x轴和直线x?1的交点分别为(0,0)和(1,1)

例4 求由抛物线

112?V???ydx???(x2)2dx?00?5x5|10??

5 类似地,由曲线x??(y),直线y?c,y?d及y轴所围成图形绕y轴旋转一周后的旋转体体积为

d2dV???xdy???[?(y)]2dy

cc例5 求由抛物线

1y?x2与直线y?1及y轴所围成图形绕y轴旋转一周后的立体体积。

1 解:V??xdy??ydy??y2|1??

0?02?0223、曲线弧长(不讲) 课后作业及小结:

1、掌握平面图形的面积公式与空间立体的体积公式 作业:P209.1,4

第八节:反常积分

1、无限区间上的反常积分 定义1 设函数

f(x)在无穷区间[a,??)连续,取b?a的正数,如果极限

b???alim?f(x)dx

??ab存在,则称此极限为

f(x)在区间[a,??)上的无穷积分,记为?f(x)dx,即

ba 这时,也称无穷积分

???af(x)dx?lim?f(x)dx,

b???b???af(x)dx存在或收敛;若极限lim?f(x)dx不存在,则称上无穷积分?b???a??af(x)dx不存在或

发散.类似地,设函数

f(x)在区间(??,b]上连续,那么我们可以定义

?如果上式中的极限存在,则称无穷积分定义2 设函数

b??f(x)dx?lim?f(x)dx.

u???ub?b??f(x)dx存在或收敛,如果不存在,则称无穷积分?b??f(x)dx不存在或发散.

f(x)在无穷区间(??,??)连续,其无穷积分定义为

?其中

????f(x)dx??c??f(x)dx????????cf(x)dx

c??c为任意常数,当上式右端两个积分都收敛时,称无穷积分?f(x)dx是收敛的;而若?f(x)dx和

???cf(x)dx至少有一个发散,则称无穷积分?????f(x)dx是发散的.

f(x)?0,且

注: 与定积分的情况类似,我们也可以考虑无穷积分的几何意义:若对一切x?[a,??],有敛,则

???af(x)dx收

???af(x)dx表示的就是由曲线y?f(x),直线x?a和x轴围成

的无穷区域的面积,例1 求解

???af(x)dx发散,则该无穷区域没有有限面积.

???0xe?xdx.

2???0xe?x2dx?lim?xeb???0b?x2b221b?x2?2111dx?lim??edx(?)?lim(e?x)??lim(e?b?1)?.

0b???202b???2b???21???1?x2dx. ??0??1110????dx?dx?dx解 ? ?arctanx?arctanx???????1?x2?01?x2??1?x2??022??1dx,当p取何值时收敛,取何值时发散. 例3 讨论广义积分?p1x??例2 求

.

??1??1解 当p?1时,有dx?dx?ln|x|???; ?1xp?1x1??111?p??11?p 当p?1时,有dx?x?lim(b?1). ?1xp1?pb???11?p?????,p?111?1?p从而 . dx?lim(b?1))??1?1xp1?pb???,p?1?p?1???1??1dxdx发散. p?1p?1综上所述,当时,广义积分?收敛,当时,广义积分?pp11xx??注 有时为了书写简便,也可以省去极限符号,广义积分的计算可以简化为

???af(x)dx?F(x)

?b?????F(??)?F(a), abf(x)dx?F(x)?F(b)?F(??),

???????其中F(??)例4 求解

x???f(x)dx?F(??)?F(??),

x????limF(x),F(??)?limF(x).

???0e?axdx (a?0)

???0e?axdx??

1???ax1?axed(ax)??e?0aa111??(limax?1)?

ax???ea??01??(lime?ax?e0)

ax???2、无界函数的反常积分(瑕积分) 定义4 如果

f(x)在某一点x0满足

limf(x)?? 或 limfx(?)?,

??x?x0x?x0则称x?x0为f(x)的瑕点.

定义5 设函数

f(x)在区间[a,b)上连续,b为f(x)在区间[a,b)上的瑕点,设??0,若极限lim????0bbaab??af(x)dx存

在,则称此极限值为函数

f(x)在区间[a,b)上的瑕积分,记为?f(x)dx,并称瑕积分?f(x)dx收敛,即

?若极限

??0baf(x)dx?lim????0bab??af(x)dx.

lim??b??af(x)dx不存在 …… 此处隐藏:3037字,全部文档内容请下载后查看。喜欢就下载吧 ……

高等数学(上册)第三章教案(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/412053.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)