信号与系统复习题(6)
88已知F [f(t)]?F(j?),则F [f(t)ej3t???]= F ?f(t)??(t?2n)?= n?????89设某因果离散系统的系统函数为H(z)?90已知某系统的频率响应为H(j?)?4e91已知某系统的系统函数为H(s)?
92已知X(z)?z,要使系统稳定,则a应满足 z?a,则该系统的单位阶跃响应为 ?j3?2,激励信号为x(t)?3cos2t,则该系统的稳态响应为 s?1z1(z?)(z?2)2,收敛域为
1?z?2,其逆变换为 293已知周期方波信号的傅氏级数:f(t)?2E11[cos?1t?cos3?1t?cos5?1t???], ?35 试画出信号f(t)的频谱Cn~ω的图形。 94.?(t?1)cos?0t? 。
95.已知一连续LTI系统的单位阶跃响应为g(t)?e?3tu(t),则该系统的单位冲激响应为: 。 96.根据图1所示系统的信号流图,可以写出其系统函数H(s)= 。
图1 图2
97.F[f(t)ej?0t]? 。
98如x(t)是一个基本周期为T的周期信号,其傅立叶系数为ak,则y(t)= -2x(t)+jx(t) 的傅立叶系数bk
= 。
99. 如图2所示是离散系统的Z域框图,该系统的系统函数H(z)= 。 100. 如信号x(t)的Nyquist频率是ω0, 则信号x2(t+1)的Nyquist频率是 。
3s?2,试判断系统的稳定性: 。
s3?2s2?3s?12s2?5s?12?102. 如信号x(t)的Laplace 变换X(s)?3,则x(0)? 。 2s?4s?14s?20101.已知连续系统函数H(s)?103. 从系统的线性、时变性、因果性角度来看,系统r(t)?e(1?t)属于 。 104.?(t)?cost? 105.已知一连续LTI系统的单位阶跃响应为g(t)?e?3tu(t),则该系统的单位冲激响应为:h(t)= 。
106.根据图所示系统的信号流图,可以写出其系统函数H(s)= 。
s-1 s-1 a b x(t) c y(t)
107.F[F(j?)e-1?j?t0]= 。
108.F1(j?)?F[f1(t)],则F2(j?)?F[f1(4?2t)]? 。 109无失真传输的频率响应函数表达式为H(j?)? 。
110. 如x(t)是一个基本周期为T的周期信号,其傅立叶系数为ak,则y(t)=x(t-1)的傅立叶系数bk = 。 111. 如信号x(t)的Nyquist频率是ω0, 则信号x2(t-1)的Nyquist频率是 。
4s2?5s?12112. 如信号x(t)的Laplace 变换X(s)?3,则limx(t)? 。 2t??s?4s?14s?20113. u[n]?u[n]? ___ ____ __。 132已知冲激序列?T?t??三计算题
n?????(t?nT),其三角函数形式的傅里叶级数为a?n?________,bn?_________ 。
d2ydydf?2tf(t)?eu(t)时,试?5?4y(t)?2?5f(t)1.已知因果LTI系统表征的微分方程为:在输入2dtdtdt用频域分析法求系统的零状态响应。
2已知线性时不变系统的一对激励和响应波形如下图所示,求该系统对激励的e?t??sin?t?u?t??u?t?1??零状态响应。 e?t?r?t? 11
t 1212OO3t
3 计算卷积 f1(t)?f2(t),并画出波形。
f1?t?f2?t?
2
11??t?1?eu?t?1?
ott?1o 1
4对图(a)所示的复合系统由三个子系统构成,已知各子系统的冲激响应如图(b)所示。 (1)求复合系统的冲激响应h(t) ,画出它的波形;
(2)用积分器、加法器和延时器构成子系统 ha?t?和hb?t?的框图; hathb?t? ha??t?y??t f?t?11?ha??t ?h?t?b oo1tt12 (a) (b)5周期信号 π?2π???f?t??3cost?sin?5t???2cos?8t?? 63????1.画出单边幅度谱和相位谱; 2.画出双边幅度谱和相位谱。
6已知信号f(t)波形如下,其频谱密度为F(jω),不必求出F(jω)的表达式,试计算下列值:
f?t?
?1?F?ω?ω?01
?
?2?F?ω?dω?? t?1O1???E??πt?????0?t???,利用频移性质求其频谱已知升余弦信号ft?1?cos密度函数,并与矩形??? ?17
2??τ??
??τ?τ??? 脉冲信号f1(t)?E?u?t???u?t???的频谱比较。2?2?????
ωc?SaSa7已知双Sa信号 f ? t ? ? ? ω c t ? ? ? ω c ? t ? 2 τ ? ?? 试求其频谱。 π ?t???1?cost(t8已知信号 f ) ? ? 求该信号的傅里叶变换。
t????0
9求信号f(t)?Sa(100t)的频宽(只计正频部分),若对f(t)进行均匀激抽样,求奈奎斯特频率fN和奈奎斯特周期TN。
10已知周期信号f(t)的波形如下图所示,求f(t)的傅里叶变换F(ω)。 f?t? 1
?34 ?11111?22?4O42
?1
?t11求下列函数的拉氏变换 f?t??tu?t?1?
例:用卷积积分的微分与积分特性两信号x(t)与h(t)的卷积积分12 用卷积积分的微分与积分特性求两信号x(t)与h(t)的卷积积分s(t)=x(t)*h(t), 并画出s(t)的波形。
s(t)=x(t)*h(t), 并画出s(t)的波形。x(t)1h(t)1-1/201t02t dx(t)12??(t?)??(t?)z1dt13已知象函数F(z)2? (1)(z?1)(z?2)dx(t)/dt1h(?1)(t)?t2[u(t)?u(t?2)]?u(t?2)4,求不同收敛域下的逆z变换。 h(-1)(t)1t1-014三角脉冲函数1/2f(t)如图4-2(a)所示的象函数0 (-1) 0?t?1?t f?t???2?t 1?t?2? ?0 其他?2f?t?t1 o12t 15应用微分性质求图24(a)中 f1 ? t? , f 2 ( f 3 ?t ? 的象函数下面说明应用微分性质应注意的问题,图24(b) t), t ? , 的波形。f 1??t?,f2??t?,f3??t?f2?t?, f3?t?是的导数 f 1?f?t??2?u?t? 332
oo t 图24(a) f1??t??3??t? (3) f??t????t?(1)2 o ott 图 4-4(b)
2f1?t??3u?t?f3?t??u?t?1tot(1)of3??t????t?t16某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系统。
当输入x1?t??δ?t?时,系统的输出为y1?t????t??e?tu?t?;
当输入x2?t??u?t??t?时,系统的输出为y2?t??3e?tu?t?;
当输入x3?t?为图中所示的矩形脉冲时,求此时系统的输出 y3?t? 。 x3?t?
1
o123t
2Ω1H17电路如图所示
?iL?0??(1)求系统的冲激响应。
vC?t?1F(2)求系统的起始状态 iL0?、v C 0 ? ,使系统的零输 e?t?入响应等于冲激响应。 ?(3)求系统的起始状态,使系统对 u?t?的激励时的完4-5(a)
全响应仍为u?t?。
18题图(a)是理想高通滤波器的幅频特性和相频特性,求此理想高通滤波器的冲激响应。
??jω?H?jω?
1 O?ω t0ω
?ωCOωCω
????
19系统的结构如下图所示,这是一种零阶保持器,它广泛应用在采样控制系统中。 (1)求出该系统的系统函数H(jω)。
(2)若输入x?t????t??2??t????3??t?2??,求输出y(t)。
x?t??输入??1t?dt????y?t?延迟?
…… 此处隐藏:1609字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [综合文档]应答器设备技术规范(征求意见稿)A1
- [综合文档]教师 2012年高考政治试题按考点分类汇
- [综合文档]保险公司的总经理助理竞职演说
- [综合文档]卫生应急大练兵大比武活动考试--题库(
- [综合文档]徐州经济技术开发区总体规划环境影响报
- [综合文档]汉语拼音表(带声调)
- [综合文档]二年级 上 思维训练( 1~18)
- [综合文档]特色学校五年发展规划
- [综合文档]机床经常出现报警“X1轴定位监控”
- [综合文档]《电子技术基础》21.§5—2、3、4 习题
- [综合文档]浙江省深化普通高中课程改革
- [综合文档]CRISP原理 - 图文
- [综合文档]2017年电大社会调查研究与方法形考答案
- [综合文档]浅析建筑施工安全毕业论文
- [综合文档]《回忆我的母亲》名师教案
- [综合文档]装饰装修工程监理规划
- [综合文档]三下乡心得体会-文艺
- [综合文档]柱计算长度系数 - 图文
- [综合文档]全流程思考,提高燃电系统热电转换率--
- [综合文档]2018年嘉定区中考物理一模含答案
- 433M车库门滚动码遥控器
- 8、架空线路施工规范
- 大学四年声乐学习的体会
- 新北师大版五年级数学上册《轴对称再认
- 部编版五年级上册语文第六单元小结复习
- 小学六年级英语形容词用法
- 第2课 抗美援朝保家卫国 课件01(岳麓版
- 2015年天津大学运筹学基础考研真题,考
- 微机计算机控制技术课后于海生(第2版)
- 安全教育实践活动
- Delphi程序设计教程_第1章_Delphi概述
- 第八讲 工业革命与启蒙运动
- 《中华人民共和国药典》2005年版二部勘
- 科粤版九年级化学2.3构成物质的微粒(1)
- 西师大版数学三年级下册《长方形、正方
- ch6_冒泡排序演示
- 第4章 冲裁模具设计
- 浙江中小民营企业员工流失论文[终稿]
- 再议有线数字电视市场营运模式
- 昆明供水工程监理大纲