信号与系统复习题(3)
94信号f(t)?d?2(t?1)[eu(t)]的傅里叶变换F?j??等于________。 dtj?e2j?e2j?ej?j?ej?(A) (B) (C) (D)
2?j?2?j?2?j??2?j?95 已知
f?k??如图95所示,则
???X(ej?)d?的值为________。
(A)2? (B)3? (C)4? (D)6?
f(k) 1 -3 -1 2 -2 -1 O 1 2 3 4 5 6 7 k 图 95
96周期信号的频谱一定是 。
(A)离散谱 (B)连续谱 (C)有限连续谱 (D)无限离散谱 97 周期奇函数的傅里叶级数中,只可能含有 。
(A正弦项(B)直流项和余弦项(C)直流项和正弦项(D)余弦项
98 波形如图99的信号f(t)通过一截止频率为50π rad/s,通带内传输幅值为1,相移为0的理想低通滤波器,则输出的频率分量为 。
(A)a0/2?a1cos(20?t)?a2cos(40?t)(B)a0/2?b1sin(20?t)?b2sin(40?t)(C)
a0/2?a1cos(20?t)(D)a0/2?b1sin(20?t)
f(t) 1 0.5 -25 25 50 O
… -100 -50 100 t/ms 图99
100信号的频谱是周期的﹣离散谱,则原时间信号为________。 (A)连续的周期信号 (B)离散的周期信号 (C)连续的非周期信号 (D)离散的非周期信号
101 已知实信号f(t)的傅里叶变换F?j???R????jX???,则信号y?t??1?f(t)?f(?t)?的傅里叶变换2Y?j??等于________。
(A) R??? (B) 2R??? (C) 2R?2?? (D) R?0.5??
102 如图1025所示周期信号f(t),其直流分量等于________。
(A)0 (B)2 (C)4 (D)6
10 f(t) ? -5 -1 0 1 4 t 5 6 ?
103cos(?ot)u(t)的拉氏变换为 。
(A)
图102
?2[?(???0)??(???0)] (B)?[?(???0)??(???0)]
(C)
ss2??02to (D)
?0
s2??02104信号f(t)?(A)
??h(t??)d?的拉氏变换为 。
11H(s) (B)2H(s) ss11(C)3H(s) (D)4H(s)
ss105 信号f(t)?eu(t)的拉氏变换几收敛域为 。
2t11,Re[s]??2 ,Re[s]??2 (B)F(s)?s?2s?211,Re[s]?2 (D)F(s)?,Re[s]?2 (C)F(s)?s?2s?2(A)F(s)?e?(s?a)T106 已知某信号的拉氏变换F(s)?,则该信号的时间函数为 。
s?a(A)e
?a(t?T)u(t?T) (B)e?atu(t?T) (C)e?atu(t?a) (D)e?a(t?a)u(t?T)
se?t107单边拉普拉斯变换F(s)?2的原函数是 。
s?4(A)sin(2t)u(t?1) (B)sin2(t?1)u(t?1) (C)cos2(t?1)u(t?1) (D)cos(2t)u(t?1) 108 单边拉普拉斯变换F(s)?2s?1?2se的原函数是 。 2s(A)tu(t) (B)tu(t?2) (C)t(t?2)ut (D)(t?2)u(t?2)
109 若线性时不变因果系统的H(j?),可由其系统函数H(s)将其中的S换成j?来取,则要求该系统函数H(s)的收敛域应为 。
(A)?>某一正数 (B)?>某一负数 (C)?<某一正数 (D)?<某一负数
110 已知一个LTI系统初始无储能,当输入f1(t)?u(t)时,则输出为y1(t)?2e?2tu(t)??(t),当输入f(t)?3e?tu(t)时,系统的零状态响应y(t)是 。
(A)(?9e?t?12e?2t)u(t) (B)(3?9e?t?12e?2t)u(t) (C)?(t)?(?6e?t?8e?2t)u(t) (D)3?(t)?(?9e?t?12e?2t)u(t) 111 以下为4个因果信号的拉氏变换,其中 不存在的傅立叶变换.
(A)
111 (B)1 (C) (D) ss?2s?2112 离散时间单位延迟器的单位响应为________。
A 、??k? B 、??k?1? C、??k?1? D 、1
113 已知一个双边序列
f?k???2k,k?03k,k?0,其z值变换为________。
A
?z?z,2?z?3B ,z?2,z?3
(z?2)(z?3)(z?2)(z?3)z?1,2?z?3D ,2?z?3
(z?2)(z?3)(z?2)(z?3)z?2,下列说法不对的事________。
z?0.5C
114对于离散时间因果系统H?z??A 这是一个一阶系统B 这是一个稳定系统C 这是一个全通系统 D 这是一个最小相位系统
115 f?k???2u??k?的z变换为________。
A F?z??2z?2z2?2B F?z??C F?z??D F?z?? z?1z?1z?1z?1116 序列2k???(?1)u(i)??的单边z变换为 ________。
ii?0k?12zz2zz2A 2B C 2D
z?4?z?2??z?1?z?4?z?2??z?1?117离散序列f?k?? A
m?0?(?1)?m?(k?m)的z变换及其收敛域为________。
zzzz,z?1 B ,z?1 C ,z?1 D ,z?1 z?1z?1z?1z?1118 已知f?k?的Z变换,F?z??ej?,F?z?的收敛域为________时,f?k?是因果序列。
A z?0.5B z?0.5C z?2D 0.5?z?2
119.连续信号f(t)与?(t?t0)的卷积,即f(t)??(t?t0)? (a) f(t) (b) f(t?t0) (c) ?(t) (d) 120.连续信号f(t)与?(t?t0)的乘积,即f(t)?(t?t0)?
(a) f(t0)?(t) (b) f(t?t0) (c) ?(t) (d) f(t0)?(t?t0)
121.线性时不变系统的数学模型是
(a) 线性微分方程 (b) 微分方程 (c) 线性常系数微分方程 (d) 常系数微分方程
122.若收敛坐标落于原点,S平面有半平面为收敛区,则
(a) 该信号是有始有终信号 (b) 该信号是按指数规律增长的信号
(c) 该信号是按指数规律衰减的信号 (d) 该信号的幅度既不增长也不衰减而等于稳定值,或虽时间t,t成比例增长的信号
123.若对连续时间信号进行频域分析,则需对该信号进行 (a) LT (b) FT (c) Z变换 (d) 希尔伯特变换 124.无失真传输的条件是
(a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线 (d) 幅频特性是一通过原点的直线,相位特性等于常数 125.描述离散时间系统的数学模型是
(a) 差分方程 (b) 代数方程 (c) 微分方程 (d) 状态方程 126.若Z变换的收敛域是 |z|?Rx1 则该序列是
(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列 127.若以信号流图建立连续时间系统的状态方程,则应选
(a) 微分器的输出作为状态变量 (b) 延时单元的输出作为状态变量 (c) 输出节点作为状态变量 (d)积分器的输出作为状态变量 128若离散时间系统是稳定因果的,则它的系统函数的极点 (a) 全部落于单位圆外 (b) 全部落于单位圆上 (c) 全部落于单位圆内 (d) 上述三种情况都不对
n?(t?t0)
128 一个因果、稳定的离散时间系统函数H?z?的极点必定在z平面的______。
(A)单位圆以外 (B)实轴上(C)左半平面(D)单位圆以内
129 如果一连续时间系统的系统H(s)只有一对在虚轴上的共轭极点,则它的h(t)应是______。 (A)指数增长信号 (B)指数衰减振荡信号(C)常数 D)等幅振荡信号
130 如果一离散时间系统的系统函数H(z)只有一个在单位圆上实数为1的极点,则它的h(k)应是______。
(A)u(k) (B) ?u(k) (C) (?1)ku(k) (D)1
131 已知一连续系统的零、极点分布如图131 所示,H(?)?1,则系统函数H(s)为________ 。
相关推荐:
- [综合文档]应答器设备技术规范(征求意见稿)A1
- [综合文档]教师 2012年高考政治试题按考点分类汇
- [综合文档]保险公司的总经理助理竞职演说
- [综合文档]卫生应急大练兵大比武活动考试--题库(
- [综合文档]徐州经济技术开发区总体规划环境影响报
- [综合文档]汉语拼音表(带声调)
- [综合文档]二年级 上 思维训练( 1~18)
- [综合文档]特色学校五年发展规划
- [综合文档]机床经常出现报警“X1轴定位监控”
- [综合文档]《电子技术基础》21.§5—2、3、4 习题
- [综合文档]浙江省深化普通高中课程改革
- [综合文档]CRISP原理 - 图文
- [综合文档]2017年电大社会调查研究与方法形考答案
- [综合文档]浅析建筑施工安全毕业论文
- [综合文档]《回忆我的母亲》名师教案
- [综合文档]装饰装修工程监理规划
- [综合文档]三下乡心得体会-文艺
- [综合文档]柱计算长度系数 - 图文
- [综合文档]全流程思考,提高燃电系统热电转换率--
- [综合文档]2018年嘉定区中考物理一模含答案
- 433M车库门滚动码遥控器
- 8、架空线路施工规范
- 大学四年声乐学习的体会
- 新北师大版五年级数学上册《轴对称再认
- 部编版五年级上册语文第六单元小结复习
- 小学六年级英语形容词用法
- 第2课 抗美援朝保家卫国 课件01(岳麓版
- 2015年天津大学运筹学基础考研真题,考
- 微机计算机控制技术课后于海生(第2版)
- 安全教育实践活动
- Delphi程序设计教程_第1章_Delphi概述
- 第八讲 工业革命与启蒙运动
- 《中华人民共和国药典》2005年版二部勘
- 科粤版九年级化学2.3构成物质的微粒(1)
- 西师大版数学三年级下册《长方形、正方
- ch6_冒泡排序演示
- 第4章 冲裁模具设计
- 浙江中小民营企业员工流失论文[终稿]
- 再议有线数字电视市场营运模式
- 昆明供水工程监理大纲