中考数学动点问题专题讲解(4)
(1)判断△OCD与△ADE是否相似?请说明理由; (2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。
练习3、在平面直角坐标系xOy中,已知二次函数
3。 4
y a2x bx (c a0的图象与)(点A在点B的x轴交于A,B两点
左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和
( 3, 12).
(1)求此二次函数的表达式;(由一般式得抛物线的解析式为...
y x2 2x 3)
(2)若直线l:y kx(k 0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;A( 1,,0)B(3,0),C(0,3)
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角 PCO与
ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.
O
练习4图
练习3图
练习4 (2008广东湛江市) 如图所示,已知抛物线y x 1与x轴交于A、B两点,与y轴交于点C. (1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)在x轴上方的抛物线上是否存在一点M,过M作MG x轴于点G,使以A、M、G三点为顶点的三角形与 PCA相似.若存在,请求出M点的坐标;否则,请说明理由.
练习5、已知:如图,在平面直角坐标系中,△ABC是直角三角形, ACB 90,点A,C的坐标分别为A( 3,0),C(1,0),tan BAC
2
3
. 4
(1)求过点A,B的直线的函数表达式;点A( 3,0),C(1,0),
393),y x B(1,
44
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP DQ m,问是否存在这样的m使得△APQ与
x
△ADB相似,如存在,请求出m的值;如不存在,请说明理由.
参考答案
例题、解:⑴由题意可设抛物线的解析式为y a(x 2)2 1 ∵抛物线过原点, ∴0 a(0 2)2 1 ∴a
1
. 4
11
抛物线的解析式为y (x 2)2 1,即y x2 x
44
⑵如图1,当OB为边即四边形OCDB是平行四边形时,CD∥=OB,
1
由0 (x 2)2 1得x1 0,x2 4,
4
∴B(4,0),OB=
4.
∴D点的横坐标为6
1
将x=6代入y (x 2)2 1,得y=-3,
4
∴D(6,-3);
根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB是平行四边形,此时D点的坐标为(-2,-3),
当OB为对角线即四边形OCBD是平行四边形时,D点即为A
点,此时D点的坐标为(2,1)
⑶如图2,由抛物线的对称性可知:AO=AB,∠AOB=∠ABO.
若△BOP与△AOB相似,必须有∠POB=∠BOA=∠BPO 设OP交抛物线的对称轴于A′点,显然A′(2,-1)
∴直线OP的解析式为y 1
2
x 由 1x 1
x224 x,
得x1 0,x2 6
.∴P(6,-3)
过P作PE⊥x轴,在Rt△BEP中,BE=2,PE=3, ∴PB=≠4.
∴PB≠OB,∴∠BOP≠∠BPO, ∴△PBO与△BAO不相似,
同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该抛物线上不存在点P,使得△BOP与△AOB相似. 练习1、解:(1)由已知可得:
3a 3
75
a b 0
解之得,a 2b c 0.
4233
c 0因而得,抛物线的解析式为:y 23x2 3
x. (2)存在.
设Q点的坐标为(m,
n),则n
223m ,
相关推荐:
- [资格考试]石油钻采专业设备项目可行性研究报告编
- [资格考试]2012-2013学年度第二学期麻风病防治知
- [资格考试]道路勘测设计 绪论
- [资格考试]控烟戒烟知识培训资料
- [资格考试]建设工程安全生产管理(三类人员安全员
- [资格考试]photoshop制作茶叶包装盒步骤平面效果
- [资格考试]授课进度计划表封面(09-10下施工)
- [资格考试]麦肯锡卓越工作方法读后感
- [资格考试]2007年广西区农村信用社招聘考试试题
- [资格考试]软件实施工程师笔试题
- [资格考试]2014年初三数学复习专练第一章 数与式(
- [资格考试]中国糯玉米汁饮料市场发展概况及投资战
- [资格考试]塑钢门窗安装((专项方案)15)
- [资格考试]初中数学答题卡模板2
- [资格考试]2015-2020年中国效率手册行业市场调查
- [资格考试]华北电力大学学习实践活动领导小组办公
- [资格考试]溃疡性结肠炎研究的新进展
- [资格考试]人教版高中语文1—5册(必修)背诵篇目名
- [资格考试]ISO9001-2018质量管理体系最新版标准
- [资格考试]论文之希尔顿酒店集团进入中国的战略研
- 全国中小学生转学申请表
- 《奇迹暖暖》17-支2文学少女小满(9)公
- 2019-2020学年八年级地理下册 第六章
- 2005年高考试题——英语(天津卷)
- 无纺布耐磨测试方法及标准
- 建筑工程施工劳动力安排计划
- (目录)中国中央空调行业市场深度调研分
- 中国期货价格期限结构模型实证分析
- AutoCAD 2016基础教程第2章 AutoCAD基
- 2014-2015学年西城初三期末数学试题及
- 机械加工工艺基础(完整版)
- 归因理论在管理中的应用[1]0
- 突破瓶颈 实现医院可持续发展
- 2014年南京师范大学商学院决策学招生目
- 现浇箱梁支架预压报告
- Excel_2010函数图表入门与实战
- 人教版新课标初中数学 13.1 轴对称 (
- Visual Basic 6.0程序设计教程电子教案
- 2010北京助理工程师考试复习《建筑施工
- 国外5大医疗互联网模式分析




