中考数学动点问题专题讲解(3)
11
12 6 12 x (12 2x) 6
22==36,即当P、Q运动时,四边形QAPC的面积不变。
(3)显然有两种情况:△PAQ∽△ABC,△QAP∽△ABC,
2x122x6
6或6 x12,解之得x 3或x 1.2 由相似关系得6 x
建立关系求解,包含的内容多,可以是函数关系,可以是方程组或不等式等,通过解方程、或
函数的最大值最小值,自变量的取值范围等方面来解决问题;也可以是通过一些几何上的关系,描述图形的特征,如全等、相似、共圆等方面的知识求解。 作为训练同学们可以综合上述方法求解:
练习1:2003年广州市中考压轴题(全卷得分最低的一道)
已知 ABC为直角三角形,AC=5,BC=12,∠ACB为直角,P是AB边上的动点(与点A、B不重合),Q是BC边上动点(与点B、C不重合)
(1) 如图,当PQ∥AC,且Q为BC的中点,求线段CP的长。
C
Q
B
A
P
当PQ与AC不平行时, CPQ可能为直角三角形吗?若有可能,求出线段CQ的长的取值范围;若不可能,请说明理由。
113
AB
2 第1问很易得出P为AB中点,则CP=2
第2问:如果 CPQ为直角三角形,由于PQ与AC不平行,则∠Q不可能为直角
又点P不与A重合,则∠PCQ也不可能为直角,只能是∠CPQ为直角,即以CQ为直径的圆与AB有交点,设CQ=2x,CQ的中点D到AB的距离DM不大于CD,
B
DMDBDM12 x5(12 x)5(12 x)
DM DM CD xACAB,即513,所以1313,由,即x
101020
x 6 CQ 12
3,而x 6,故3,亦即3时, CPQ可能为直角三角形。
当然还有其它方法。同学们可以继续研究。
练习2:(广东省2003年中考试题最后一题)在Rt△ABC中,AB=AC,∠BAC=90°,
O为BC的中点,
(1)写出点O到△ABC的三个顶点 A、B、C距离的大小关系。 (2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
该题与例3类似,同学们可以仿 本大类习题的共性:
1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数.
2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值.
点动、线动、形动构成的问题称之为动态几何问题.
它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.
1 以双动点为载体,探求函数图象问题
例1 (2007年杭州市)在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1). 动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,两点运动时的速度都是1cm/s. 而当点P到达点A时,点Q正好到达点C. 设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm)2(如图2). 分别以t,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN. (1)分别求出梯形中BA,AD的长度; (2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y关于x的函数关系的大致图象.
评析 本题将点的运动过程中形成的函数解析式与其相应的函数图象有机的结合在一起,二者相辅相成,给人以清新、淡雅之感. 本题彰显数形结合、分类讨论、函数建模与参数思想在解题过程中
的灵活运用. 解决本题的关键是从函数图象中确定线段AB、梯形的高与t的函数关系式,建立起y与t的函数关系式,进而根据函数关系式补充函数图象. 2 以双动点为载体,探求结论开放性问题
例2 (2007年泰州市)如图5,Rt△ABC中,∠B=90°,∠CAB=30°.它的顶点A的坐标为(10,0),顶点B的坐标为(5,53),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图6),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由. 解 (1)∠BAO=60°.
(2)点P的运动速度为2个单位/秒.
评析 本题是以双点运动构建的集函数、开放、最值问题于一体的综合题. 试题有难度、有梯度也有区分度,是一道具有很好的选拔功能的好题. 解决本题的关键是从图象中获取P的速度为2,然后建立S与t的函数关系式,利用函数的性质解得问题(3).本题的难点是题(4),考生要从题目的信息中确定建立以B为直角顶点的三角形,以B为临界点进行分类讨论,进而确定点的个数问题. 3 以双动点为载体,探求存在性问题
例3 (2007年扬州市)如图8,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒. (1)若a=4厘米,t=1秒,则PM=厘米;
(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.
评析 本题是以双动点为载体,矩形为背景创设的存在性问题.试题由浅入深、层层递进,将几何与代数知识完美的综合为一题,侧重对相似和梯形面积等知识点的考查,本题的难点主要是题(3),解决此题的关键是运用相似三角形的性质用t的代数式表示PM,进而利用梯形面积相等列等式求出t与a的函数关系式,再利用t的范围确定的a取值范围. 第(4)小题是题(3)结论的拓展应用,在解决此问题的过程中,要有全局观念以及对问题的整体把握.
4 以双动点为载体,探求函数最值问题
例4 (2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交Rt△ACD的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为S1,AE、EB、BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题:
(1)当0<X
(2)①若y是S1与S2的和,求y与x之间的函数关系式; (图10为备用图) ②求y的最大值.
解 (1)以E、F、G、H为顶点的四边形是矩形,因为正方形ABCD的边长为82,所以AC=16,过B作BO⊥AC于O,则OB=89,因为AE=x,所以S2=4x,因为HE=AE=x,EF=16-2x,所以S1=x(16-2x), 当S1=S2时, 4x=x(16-2x),解得x1=0(舍去),x2= …… 此处隐藏:3214字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [资格考试]石油钻采专业设备项目可行性研究报告编
- [资格考试]2012-2013学年度第二学期麻风病防治知
- [资格考试]道路勘测设计 绪论
- [资格考试]控烟戒烟知识培训资料
- [资格考试]建设工程安全生产管理(三类人员安全员
- [资格考试]photoshop制作茶叶包装盒步骤平面效果
- [资格考试]授课进度计划表封面(09-10下施工)
- [资格考试]麦肯锡卓越工作方法读后感
- [资格考试]2007年广西区农村信用社招聘考试试题
- [资格考试]软件实施工程师笔试题
- [资格考试]2014年初三数学复习专练第一章 数与式(
- [资格考试]中国糯玉米汁饮料市场发展概况及投资战
- [资格考试]塑钢门窗安装((专项方案)15)
- [资格考试]初中数学答题卡模板2
- [资格考试]2015-2020年中国效率手册行业市场调查
- [资格考试]华北电力大学学习实践活动领导小组办公
- [资格考试]溃疡性结肠炎研究的新进展
- [资格考试]人教版高中语文1—5册(必修)背诵篇目名
- [资格考试]ISO9001-2018质量管理体系最新版标准
- [资格考试]论文之希尔顿酒店集团进入中国的战略研
- 全国中小学生转学申请表
- 《奇迹暖暖》17-支2文学少女小满(9)公
- 2019-2020学年八年级地理下册 第六章
- 2005年高考试题——英语(天津卷)
- 无纺布耐磨测试方法及标准
- 建筑工程施工劳动力安排计划
- (目录)中国中央空调行业市场深度调研分
- 中国期货价格期限结构模型实证分析
- AutoCAD 2016基础教程第2章 AutoCAD基
- 2014-2015学年西城初三期末数学试题及
- 机械加工工艺基础(完整版)
- 归因理论在管理中的应用[1]0
- 突破瓶颈 实现医院可持续发展
- 2014年南京师范大学商学院决策学招生目
- 现浇箱梁支架预压报告
- Excel_2010函数图表入门与实战
- 人教版新课标初中数学 13.1 轴对称 (
- Visual Basic 6.0程序设计教程电子教案
- 2010北京助理工程师考试复习《建筑施工
- 国外5大医疗互联网模式分析




