高三数学寒假作业冲刺培训班之历年真题汇编复习实战10950
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()
(1)
18.下图是某地区2000年至环境基础设施投资额y(单位:亿元)的折现图。
高考模拟复习试卷试题模拟卷
【考情解读】
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n 项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.
4.了解等比数列与指数函数的关系.
【重点知识梳理】
1.等比数列的定义
如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.
数学语言表达式:an an -1
=q(n≥2,q 为非零常数),或an +1an =q(n ∈N*,q 为非零常数). 2. 等比数列的通项公式及前n 项和公式
(1)若等比数列{an}的首项为a1,公比是q ,则其通项公式为an =a1qn -1;
通项公式的推广:an =amqn -m.
(2)等比数列的前n 项和公式:当q =1时,Sn =na1;当q≠1时,Sn =a1(1-qn ) 1-q =a1-anq 1-q
. 3.等比数列及前n 项和的性质
(1)如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项?a ,G ,b 成等比数列?G2=ab.
(2)若{an}为等比数列,且k +l =m +n(k ,l ,m ,n ∈N*),则ak·al =am·an .
(3)相隔等距离的项组成的数列仍是等比数列,即ak ,ak +m ,ak +2m ,…仍是等比数列,公比为qm .
(4)当q≠-1,或q =-1且n 为奇数时,Sn ,S2n -Sn ,S3n -S2n 仍成等比数列,其公比为qn .
【高频考点突破】
考点一 等比数列中基本量的求解
【例1】 (1)设{an}是由正数组成的等比数列,Sn 为其前n 项和.已知a2a4=1,S3=7,则S5等于() A.152 B.314 C.334 D.172
(2)在等比数列{an}中,a4=2,a7=16,则an =________.
(3)在等比数列{an}中,a2+a5=18,a3+a6=9,an =1,则n =________.
【答案】(1)B(2)2n-3(3)6
规律方法等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.
【变式探究】在等比数列{an}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.
考点二等比数列的性质及应用
【例2】 (1)公比为2的等比数列{an}的各项都是正数,且a3a11=16,则log2a10=()
A.4 B.5 C.6 D.7
(2)等比数列{an}的首项a1=-1,前n项和为Sn,若S10
S5=
31
32,则公比q=________.
【答案】(1)B(2)-12 规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则am·an =ap·aq”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.
【变式探究】 (1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为()
A .-3
B .±3
C .-3 3
D .±33
(2)已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于()
A .5 2
B .7
C .6
D .42
【答案】(1)C(2)A
考点三 等比数列的判定与证明
【例3】已知数列{an}的前n 项和为Sn ,数列{bn}中,b1=a1,bn =an -an -1(n≥2),且an +Sn =n.
(1)设cn =an -1,求证:{cn}是等比数列;
(2)求数列{bn}的通项公式.
规律方法 证明数列{an}是等比数列常用的方法:一是定义法,证明an an -1
=q(n≥2,q 为常数);二是等比中项法,证明a2n =an -1·an +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.
【变式探究】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5.
(1)求数列{bn}的通项公式;
(2)数列{bn}的前n 项和为Sn ,求证:数列??????Sn +54是等比数列.
【真题感悟】
【高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b =.
【答案】1
【高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =.
【答案】6
1.(·重庆卷)对任意等比数列{an},下列说法一定正确的是( )
A .a1,a3,a9成等比数列
B .a2,a3,a6成等比数列
C.a2,a4,a8成等比数列
D.a3,a6,a9,成等比数列
【答案】D
2.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=
________.
【答案】1
3.(·广东卷)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.
【答案】50
4.(·全国卷)等比数列{an}中,a4=2,a5=5,则数列{lg an}的前8项和等于()
A.6 B.5
C.4 D.3
【答案】C
5.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若
…… 此处隐藏:1264字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [教育文库]夜场KTV服务员的岗位职责及工作流程[1]
- [教育文库]企划、网络、市场绩效考核方案
- [教育文库]学党史、知党情、强党性--“党的基本理
- [教育文库]2016年高考物理大一轮总复习(江苏专版
- [教育文库]干部廉洁自律自查自纠的报告
- [教育文库]2010年北京大学心理学系拟录取硕士研究
- [教育文库]资金时间价值练习题及答案
- [教育文库]保护环境的心得体会
- [教育文库]英语角内容:英语趣味小知识
- [教育文库]档案收集与管理工作通知
- [教育文库]劳动规章制度范本范本
- [教育文库]高考物理一轮复习课后限时作业1运动的
- [教育文库]机械工艺夹具毕业设计195推动架设计说
- [教育文库]通用技术教学比赛说课稿2
- [教育文库]2018年四年级英语下册 Module 7 Unit 2
- [教育文库]第2章 宽带IP网络的体系结构
- [教育文库]九年级化学第五单元课题3《根据化学方
- [教育文库]小学英语六年级情态动词用法归纳
- [教育文库]甲级单位编制窑井盖项目可行性报告(立
- [教育文库]2016-2021年中国城市规划行业全景调研
- 高考英语听力十大场景词汇总结
- 全省领导班子思想政治建设座谈会会议精
- 人教版新课标高一英语提优竞赛试题 下
- 江西省2014年生物中考试题
- 长沙镇食品药品安全事故应急预案
- 《金刚石、石墨和C60》片段教学设计
- 福州教育学院(王旭东)
- 基于EDA音乐播放器的设计
- 9、古诗两首《夜书所见》《九月九日忆
- 小学语文课外阅读有效策略探讨
- 贵州文化产业发展成支柱产业的问卷调查
- 膀胱类癌的诊治体会(附3例报告)
- 发动机积碳产生的原因
- Configuring Code Composer Studio for
- 学生良好的心理素质如何培养点滴谈
- 46 电沉积法制备锂离子电池用硅-锂薄膜
- 美舍雅阁公司管理中各部门职责
- 去壳剥皮的小妙招
- 六自由度运动平台的仿真研究
- Pride and Prejudice(傲慢与偏见)