Restricted Dumont permutations, Dyck paths and noncrossing p
Abstract. We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain p
RESTRICTEDDUMONTPERMUTATIONS,DYCKPATHS,AND
NONCROSSINGPARTITIONS
ALEXANDERBURSTEIN,SERGIELIZALDE,ANDTOUFIKMANSOUR
arXiv:math/0610234v1 [math.CO] 6 Oct 2006Abstract.WecompletetheenumerationofDumontpermutationsofthesecondkindavoidingapatternoflength4whichisitselfaDumontpermutationofthesecondkind.WealsoconsidersomecombinatorialstatisticsonDumontpermutationsavoidingcertainpatternsoflength3and4andgiveanaturalbijectionbetween3142-avoidingDumontpermutationsofthesecondkindandnoncrossingpartitionsthatusescycledecomposition,aswellasbijectionsbetween132-,231-and321-avoidingDumontpermutationsandDyckpaths.Finally,weenumerateDumontpermutationsofthe rstkindsimultaneouslyavoidingcertainpairsof4-letterpatternsandanotherpatternofarbitrarylength.1.PreliminariesThemaingoalofthispaperistogiveanaloguesofenumerativeresultsoncertainclassesofpermutationscharacterizedbypattern-avoidanceinthesymmetricgroupSn.InthesetofDumontpermutations(seebelow)weidentifyclassesofrestrictedDumontpermutationswithenumerativepropertiesanalogoustoresultsonpermutations.Moreprecisely,westudythenumberofDumontpermutationsoflength2navoidingeithera3-letterpatternora4-letterpattern.WealsogivedirectbijectionsbetweenequinumeroussetsofrestrictedDumontpermutationsoflength2nandotherobjectssuchasrestrictedpermutationsoflengthn,Dyckpathsofsemilengthn,ornoncrossingpartitionsof[n]={1,2...,n}.1.1.Patterns.Letσ∈Snandτ∈Skbetwopermutations.Wesaythatτoccursinσ,orσ∈Sncontainsτ,ifσhasasubsequence(σ(i1),...,σ(ik)),1≤i1<···<ik≤n,thatisorder-isomorphictoτ(inotherwords,foranyj1andj2,σ(ij1)≤σ(ij2)ifandonlyifτ(j1)≤τ(j2)).Suchasubsequenceiscalledanoccurrence(oraninstance)ofτinσ.Inthiscontext,thepermutationτiscalledapattern.Ifτdoesnotoccurinσ,wesaythatσavoidsτ,orisτ-avoiding.WedenotebySn(τ)thesetofpermutationsinSnavoidingapatternτ.IfTisasetofpatterns,thenSn(T)=∩τ∈TSn(τ),i.e.Sn(T)isthesetofpermutations
inSnavoidingallpatternsinT.
The rstresultsintheextensivebodyofresearchonpermutationsavoidinga3-letterpatternareduetoKnuth[9],buttheintensivestudyofpatternsinpermutationsbeganwithSimionandSchmidt[16]whoconsideredpermutationsandinvolutionsavoidingeachsetTof3-letterpatterns.OneofthemostfrequentlyconsideredproblemsistheenumerationofSn(τ)andSn(T)forvariouspatternsτandsetsofpatternsT.Theinventoryofcardinalitiesof|Sn(T)|forT S3isgivenin[16],andasimilarinventoryfor|Sn(τ1,τ2)|,whereτ1∈S3andτ2∈S4isgivenin[23].Someresultson|Sn(τ1,τ2)|forτ1,τ2∈S4areobtainedin
[22].Theexactformulafor|Sn(1234)|andthegeneratingfunctionfor|Sn(12...k)|
are
Abstract. We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain p
foundin[7].B´ona[2]hasfoundtheexactvalueof|Sn(1342)|=|Sn(1423)|,andStankova
[18,19]showedthat|Sn(3142)|=|Sn(1342)|.Forasurveyofresultsonpatternavoidance,see[1,8].
Anotherproblemis ndingequinumerouslyavoided(setsof)patterns,i.e.setsT1andT2suchthat|Sn(T1)|=|Sn(T2)|foranyn≥0.Such(setsof)patternsarecalledWilf-equivalentandsaidtobelongtothesameWilfclass.ThereareeightsymmetryoperationsonSnthatmapeverypatternontoaWilf-equivalentpattern,including:
reversalr:r(τ)(j)=τ(n+
complementrupside c=down.c r:c:rc (τc)((τj)()j=)n=+1 n1+ j),1τ (i.e.jτ),r(ni.e.(τ)+1cis( τ)τjisread),τi.e.readright-to-left.r upsidec(τ)isdown.τreadright-to-left
inversei:i(τ)=τ 1.
Thesetofpatterns r,c,i (τ)={τ,r(τ),c(τ),r(c(τ)),τ 1,r(τ 1),c(τ 1),r(c(τ 1))}iscalledthesymmetryclassofτ.
Sometimeswewillrepresentapermutationπ∈Snbyplacingdotsonann×nboard.Foreachi=1,...,n,wewillplaceadotwithabscissaiandordinateπ(i)(theoriginoftheboardisatthebottom-leftcorner).
1.2.Dumontpermutations.InthispaperweanswersomeoftheaboveproblemsinthecaseofDumontpermutations.ADumontpermutationofthe rstkindisapermutationπ∈S2nwhereeachevenentryisfollowedbyadescentandeachoddentryisfollowedbyanascentorendsthestring.Inotherwords,foreveryi=1,2,...,2n,
π(i)iseven= i<2nandπ(i)>π(i+1),
π(i)isodd= π(i)<π(i+1)ori=2n.
ADumontpermutationofthesecondkindisapermutationπ∈S2nwhereallentriesatevenpositionsarede cienciesandallentriesatoddpositionsare xedpointsorexcedances.Inotherwords,foreveryi=1,2,...,n,
π(2i)<2i,
π(2i 1)≥2i 1.
WedenotethesetofDumontpermutationsofthe rst(resp.second)kindoflength2nbyD12n(resp.D22n).Forexample,D1212{2143,3142,4132}.Wealson.de neDumontD1-Wilf-equivalence2=D2={21},DandD4={2143,3421,4213},D2-Wilf-equivalencesimilarly4=totheWilf-equivalenceonS[4]showedthat
|D12n|=|D22n|=G2n+2=2(1 22n+2)B2n+2,
whereGnisthenthGenocchinumber,amultipleoftheBernoullinumberBn.ListsofDumontpermutationsD12nandD22nforn≤4aswellassomebasicinformationandreferencesforGenocchinumbersandDumontpermutationsmaybeobtainedin[15]and[17,A001469].TheexponentialgeneratingfunctionsfortheunsignedandsignedGenocchinumbersareasfollows:
∞Gx2n
2n
n=12, ∞( 1)nGx2nx2nn=1ex+1 x= xtanh
Abstract. We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain p
SomecardinalitiesofsetsofrestrictedDumontpermutationsoflength2nparallelthoseofrestricted
permutations
oflengthn.Forexample,thefollowingresultswereobtainedin
[3,11]:
|D12n(τ)|=Cnforτ∈{132,231,312},whereCn=1
2n ,thenthCatalannumber,fo …… 此处隐藏:32791字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [教育文库]夜场KTV服务员的岗位职责及工作流程[1]
- [教育文库]企划、网络、市场绩效考核方案
- [教育文库]学党史、知党情、强党性--“党的基本理
- [教育文库]2016年高考物理大一轮总复习(江苏专版
- [教育文库]干部廉洁自律自查自纠的报告
- [教育文库]2010年北京大学心理学系拟录取硕士研究
- [教育文库]资金时间价值练习题及答案
- [教育文库]保护环境的心得体会
- [教育文库]英语角内容:英语趣味小知识
- [教育文库]档案收集与管理工作通知
- [教育文库]劳动规章制度范本范本
- [教育文库]高考物理一轮复习课后限时作业1运动的
- [教育文库]机械工艺夹具毕业设计195推动架设计说
- [教育文库]通用技术教学比赛说课稿2
- [教育文库]2018年四年级英语下册 Module 7 Unit 2
- [教育文库]第2章 宽带IP网络的体系结构
- [教育文库]九年级化学第五单元课题3《根据化学方
- [教育文库]小学英语六年级情态动词用法归纳
- [教育文库]甲级单位编制窑井盖项目可行性报告(立
- [教育文库]2016-2021年中国城市规划行业全景调研
- 高考英语听力十大场景词汇总结
- 全省领导班子思想政治建设座谈会会议精
- 人教版新课标高一英语提优竞赛试题 下
- 江西省2014年生物中考试题
- 长沙镇食品药品安全事故应急预案
- 《金刚石、石墨和C60》片段教学设计
- 福州教育学院(王旭东)
- 基于EDA音乐播放器的设计
- 9、古诗两首《夜书所见》《九月九日忆
- 小学语文课外阅读有效策略探讨
- 贵州文化产业发展成支柱产业的问卷调查
- 膀胱类癌的诊治体会(附3例报告)
- 发动机积碳产生的原因
- Configuring Code Composer Studio for
- 学生良好的心理素质如何培养点滴谈
- 46 电沉积法制备锂离子电池用硅-锂薄膜
- 美舍雅阁公司管理中各部门职责
- 去壳剥皮的小妙招
- 六自由度运动平台的仿真研究
- Pride and Prejudice(傲慢与偏见)




