高等数学微积分教程第四章多元函数微分学--多元复合函数求导
高等数学微积分教程
第三节
多元复合函数微分法
高等数学微积分教程
第三节 复合函数的微分法一. 复合函数的微分法 dy dy du = 一元复合函数的微分法则--链导法:(1).z = f [ ( x),ψ ( x)]dx du dx
推广
定理1 设 u = (x) 和 v = ψ (x) 都在点x可导,而z=f(u,v)在对应点 (u,v)可微,则复合函数 z = f [ ( x),ψ ( x)] 在点x可导,且 全导数dz f du f dv = + dx u dx v dx
u z v x
(证明略) 注:1.上述定理可推广到所有的多元复合函数.
2. 因为多元复合函数类型复杂,所以不要死记公式,要学会用 复合关系图.
高等数学微积分教程
例如: z = f (u , v, w), u = ( x), v = ψ ( x), w = h( x)dz f du f dv f dw = + + dx u dx v dx w dx
z
u v w
x
u z v
x y
(2).z = f [ ( x, y ),ψ ( x, y )]
定理2 设 u = ( x, y ) 和 v = ψ ( x, y ) 都在点(x,y)可偏导,而z=f(u,v) 在对应点(u,v)可微,则复合函数 z = f [ ( x, y ),ψ ( x, y )] 在 点(x,y)可偏导,且 z z u z v = + x u x v x
z z u z v = + y u y v y
高等数学微积分教程
类似的: z = f (u , v, w), u = ( x, y ), v = ψ ( x, y ), w = h( x, y ) u v w x y z z u z v z w = + + x u x v x w x
z
z z u z v z w = + + y u y v y w y
类似的: z = f (u , x, y ), u = ( x, y ) z = f [ ( x, y ), x, y ] z x u y x y z f u f = + y u y y
z f u f = + x u x x
z = f [ ( x, y ), x, y ] 对x的偏导数
z = f (u , x, y ) 对x的偏导数
注意符号的区别
高等数学微积分教程
例1. z = e sin v, u = xy, v = x + y,u
解法一: 将 u,v 带入解出偏导数; 解法二: 用链导法:
z z , 求 x y
z z u z v = + = e u sin v y + eu cos v 1 x u x v x
= e xy [ y sin( x + y ) + cos( x + y )] z z u z v = e u sin v x + e u cos v 1 = + y u y v y
= e xy [ x sin( x + y ) + cos( x + y )]
由此例看出,链导法对于具体函数帮助不大
高等数学微积分教程
例2.
u=e
x2 + y2 + z 2
, z = x sin y2
解法一: u = e u x 2 + y 2 + x 4 sin 2 y =e (2 x + 4 x 3 sin 2 y ) x 解法二: u f z f = + x z x x
x 2 + y 2 + x 4 sin 2 y
z 求 x
2 x sin y + 2 xe y z z z = f ( ), f (u ) 可微,证明 x + y =0 例3. x x y z dz u 1 z dz u y = = f ′(u ) = = f ′(u ) ( 2 ) y du y x x du x x z z ∴x + y =0 x y
= 2 ze
x2 + y2 + z2
x2 + y2 + z2
高等数学微积分教程
y , f (u ) 可微,证明 例4. z = 2 2 f (x y )
1 z 1 z z + = 2 x x y y y
z yf ′ (2 x) 2 xyf ′ = = 2 x f f2 ′ ( 2 y ) f + 2 y 2 f ′ z f yf = = 2 f2 f y1 z 1 z 1 z ∴ + = = 2 x x y y yf y
高等数学微积分教程
二. 复合函数的高阶偏导数 2z 2 z 例5. z = f ( x y , xy), f 具有二阶连续偏导数,求
2 , x x y2 2
z = f (u, v), u = x 2 y 2 , v = xy z z u z v = + = 2 xf1 + yf 2 x u x v x
f1 = f u (u , v) 注意: f 2 = f v (u , v)
2z u v u v = 2 f1 + 2 x[ f11 + f12 ] + y[ f 21 + f 22 ] 2 x x x x x
= 2 f1 + 4 x 2 f11 + 4 xyf12 + y 2 f 22
高等数学微积分教程
2 z u v u v = 2 x[ f11 + f12 ] + f 2 + y[ f 21 + f 22 ] x y y y y y
= f 2 4 xyf11 + 2( x 2 y 2 ) f12 + xyf 22
2w 例6. w = f ( x + y + z , xyz ), f 具有二阶连续偏导数,求 x z w = f1 + yzf 2 x 2w = f11 + xyf12 + yf 2 + yz ( f 21 + xyf 22 ) x z
= f11 + ( x + z ) yf12 + yf 2 + xy 2 zf 22
高等数学微积分教程
三. 全微分形式不变性 z z z = f (u , v) : dz = du + dv u v 若 u = ( x, y ) v = ψ ( x, y ) 则对 z = f [ ( x, y ),ψ ( x, y )] : z z dz = dx + dy x y z u z v z u z v ( + )dy = ( + )dx + u y v y u x v x z u u z v v = ( dx + dy ) + ( dx + dy ) u x y v x y
=
z z du + dv u v
全微分形式不变性
高等数学微积分教程
注:(1).利用全微分形式不变性可得出与一元函数类似的微分 法则; (2).可以利用全微分形式不变性及微分法则求微分和偏导数. 例如前面例1: 解法三: dz = d (e u sin v) = e u sin vdu + e u cos vdvdu = d ( xy ) = ydx + xdy dv = d ( x + y ) = dx + dy
= e xy [ y sin( x + y ) + cos( x + y )]dx + e xy [ x sin( x + y ) + cos( x + y )]dy∴ z = e xy [ y sin( x + y ) + cos( x + y )] x z = e xy [ x sin( x + y ) + cos( x + y )] y
高等数学微积分教程
练习 2z 1. z = f (e x sin y, x 2 + y 2 ), 其中f有二阶连续偏导数, 求 x y
z = f1 ' e x sin y + f 2 ' 2 x, x 2 z x = e sin y f1 '+2 xf 2 ' x y y
(
)
= e x cos yf1 '+e x sin y ( f11 ' ' e x cos y + 2 yf12 ' ' ) + 2 x( f 21 ' ' e x cos y + 2 yf 22 ' ' ) = e x cos yf1 '+e 2 x sin y cos yf11 ' ' + 2e x ( y sin y + x cos y ) f12 ' '+4 xyf 22 ' '.
高等数学微积分教程
2. s = f ( xy, yz, zx), 其中f有连续偏导数, 求ds
s = yf1 + zf 3 , x s = xf1 '+ zf 2 ' , y s = yf 2 '+ xf 3 ' , z ∴ ds = ( yf1 '+ zf 3 ' )dx + ( xf1 '+ zf 2 ' )dy + ( yf 2 '+ xf 3 ' )dz.
…… 此处隐藏:1694字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [外语考试]管理学 第13章 沟通
- [外语考试]07、中高端客户销售流程--分类、筛选讲
- [外语考试]2015-2020年中国高筋饺子粉市场发展现
- [外语考试]“十三五”重点项目-汽车燃油表生产建
- [外语考试]雅培奶粉培乐系列适用年龄及特点
- [外语考试]九三学社入社申请人调查问卷
- [外语考试]等级薪酬体系职等职级表
- [外语考试]货物买卖合同纠纷起诉状(范本一)
- [外语考试]青海省实施消防法办法
- [外语考试]公交车语音自动报站系统的设计第3稿11
- [外语考试]logistic回归模型在ROC分析中的应用
- [外语考试]2017-2021年中国隔膜泵行业发展研究与
- [外语考试]神经内科下半年专科考试及答案
- [外语考试]园林景观设计规范标准
- [外语考试]2018八年级语文下册第一单元4合欢树习
- [外语考试]分布式发电及微网运行控制技术应用
- [外语考试]三人行历史学笔记:中世纪人文主义思想
- [外语考试]2010届高考复习5年高考3年联考精品历史
- [外语考试]挖掘机驾驶员安全生产责任书
- [外语考试]某211高校MBA硕士毕业论文开题报告(范
- 用三层交换机实现大中型企业VLAN方案
- 斯格配套系种猪饲养管理
- 涂层测厚仪厂家直销
- 研究生学校排行榜
- 鄱阳湖湿地景观格局变化及其驱动力分析
- 医学基础知识试题库
- 2010山西省高考历年语文试卷精选考试技
- 脉冲宽度法测量电容
- 谈高职院校ESP教师的角色调整问题
- 低压配电网电力线载波通信相关技术研究
- 余额宝和城市商业银行的转型研究
- 篮球行进间运球教案
- 气候突变的定义和检测方法
- 财经大学基坑开挖应急预案
- 高大支模架培训演示
- 一种改进的稳健自适应波束形成算法
- 2-3-鼎视通核心人员薪酬股权激励管理手
- 我国电阻焊设备和工艺的应用现状与发展
- MTK手机基本功能覆盖测试案例
- 七年级地理教学课件上册第四章第一节