教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 文库大全 > 资格考试 >

应用物理学毕业设计-基于Matlab的非线性系统控制仿真研究(3)

来源:网络收集 时间:2025-09-19
导读: 使过程控制系统的设计与整定发生了革命性的变化。Simulink是Matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构

使过程控制系统的设计与整定发生了革命性的变化。Simulink是Matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

(1)Simulink 的功能[11]

Simulink是Matlab中的一种可视化仿真工具,是一种基于Matlab的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。Simulink与Matlab紧密集成,可以直接访问Matlab大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

(2)Simulink的特点

a.丰富的可扩充的预定义模块库。

b.交互式的图形编辑器来组合和管理直观的模块图

c.以设计功能的层次性来分割模型,实现对复杂设计的管理。

d.通过Model Explorer 导航、创建、配置、搜索模型中的任意信号、参数、属性,生成模型代码。

e.提供API用于与其他仿真程序的连接或与手写代码集成。

f.使用Embedded MATLAB模块在Simulink和嵌入式系统执行中调用Matlab算法。

g.使用定步长或变步长运行仿真,根据仿真模式来决定以解释性的方式运行或以编译C代码的形式来运行模型。

h.图形化的调试器和剖析器来检查仿真结果,诊断设计的性能和异常行为。

2.3 本章小结

当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统,PID控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

而Matrix Laboratory(缩写为Matlab)软件包[12],是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。其中包括:一般数值分析、矩阵运算、数字信号处理、建模和系统控制和优化等应用程序,并将应用程序和图形集于便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程并能够进行高效率和富有创造性的计算,同时提供了与其它高级语言的接口,是科学研究和工程应用必备的工具[13]。

第3章 PID控制简介及仿真实例分析

3.1 PID控制简介

3.1.1 PID控制原理

当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和调节控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节[14]。

在过去的十几年里,PID控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID结构,而且许多高级控制都是以PID控制为基础的。

常规PID控制系统原理如图3-1所示。这是一个典型的单位负反馈控制系统,它由PID控制器和被控对象组成。

图3-1 PID控制系统原理图

PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值c(t),构成偏差

、积分(I)、微分(D)通过线性组合构成控制量,e(t) r(t) c(t),将偏差的比例(P)

对受控对象进行控制。其控制规律为[4]

1u(t) Kp e(t) Ti tde(t) de(t)e(t)dt T Ke(t) Ke(t)dt K (3-1) dpt d 00dt dtt

G(s) U(s)E(s) Kp 1 传递函数为:

1 Tds Kp Kt Kds (3-2) Ttss 1

式中Kp为比例系数,Td为微分时间常数;Kt Kpt为积分常数,Kd KpTd为微

分系数。PID控制器各校正环节的作用如下:

(1)比例环节。即时成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用以减小偏差。当偏差e(t)=0时,控制作用也为0。因此,比例控制是基于偏差进行调节的,即有差调节。

[15]

系统的响应速度和调节精度取决于比例系数Kp。Kp越大,系统的响应速度越快,

系统的调节精度越高,但易产生超调,甚至会导致系统不稳定。Kp取值过小,则会降

低调节精度,使响应速度缓慢,从而延长调节时间,使系统静态、动态特性变坏[16]。

(2)积分环节。能对偏差进行记忆,主要用于消除静差,提高系统的无差度,积分作用的强弱取决于积分时间常数Tt。Tt越小,积分作用越强,系统的稳态误差消除越

快,但Tt过小,在响应过程的初期会产生积分饱和现象,从而引起响应过程的较大超调。

若Tt过大,将使系统稳态误差难以消除,影响系统的调节精度。

(3)微分环节。能反映偏差的变化趋势,并能在偏差信号值变得太大之前,在系统引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间,实现了对偏差变化进行提前预报。但Td过大,会使响应过程提前制动,从而延长调节时间,而且

会降低系统的抗干扰性能。

(4)比例积分环节。PI控制器可以使系统在进入稳态后无稳态误差。PI控制器在与被控对象串联时,相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于s左半平面的开环零点。位于远点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改善系统的稳态性能;而增加的负实部零点则可减小系统的阻尼程度,缓和PI控制器极点对系统稳态性及动态过程产生的不利影响。在实际工程中,PI控制器通常用来改变系统的稳态性能。

(5)比例微分环节。自动控制系统在克服误差的调节过程中可能会出现振荡甚至出现不稳定,其原因是由于存在有较大惯性的组件(环节)或有滞后的组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有“比例+微分”的控制器,就能提前使抑制误差的作用等于零,甚 …… 此处隐藏:2832字,全部文档内容请下载后查看。喜欢就下载吧 ……

应用物理学毕业设计-基于Matlab的非线性系统控制仿真研究(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wenku/107456.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)