2017年黑龙江省龙东地区中考数学试卷(农垦、森工用)(8)
题型.
26.(8分)(2017?黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.
旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出) 若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.
【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;
图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OD=
OA,
OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=
AC′,于是得到结论.
OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=【解答】解:图2结论:AC′=BD′,AC′⊥BD′, 理由:∵四边形ABCD是正方形, ∴AO=OC,BO=OD,AC⊥BD, ∵将Rt△COD旋转得到Rt△C′OD′, ∴OD′=OD,OC′=OC,∠D′OD=∠C′OC, ∴AO=BO,OC′=OD′,∠AOC′=∠BOD′, 在△AOC′与△BOD′中,∴△AOC′≌△BOD′,
∴AC′=BD′,∠OAC′=∠OBD′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,
第26页(共32页)
,
∴∠O′AC′+∠AO′D′=90°, ∴AC′⊥BD′;
图3结论:BD′=AC′,AC′⊥BD’
理由:∵四边形ABCD是菱形, ∴AC⊥BD,AO=CO,BO=DO, ∵∠ABC=60°, ∴∠ABO=30°, ∴OB=
OA,OD=
OC,
∵将Rt△COD旋转得到Rt△C′OD′, ∴OD′=OD,OC′=OC,∠D′OD=∠C′OC, ∴OD′=∴
OC′,∠AOC′=∠BOD′, =
,
∴△AOC′∽△BOD′, ∴∴BD′=
=
=AC′,
,∠OAC′=∠OBD′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°, ∴∠O′AC′+∠AO′D′=90°, ∴AC′⊥BD′.
【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.
27.(10分)(2017?黑龙江)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A
第27页(共32页)
型口罩和2个B型口罩共需29元.
(1)求一个A型口罩和一个B型口罩的售价各是多少元?
(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?
【分析】(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,根据:“1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元”列方程组求解即可;
(2)设A型口罩x个,根据“A型口罩数量不少于35个,且不多于B型口罩的3倍”确定x的取值范围,然后得到有关总费用和A型口罩之间的关系得到函数解析式,确定函数的最值即可.
【解答】解:(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,依题意有:
,
解得:
.
答:一个A型口罩的售价是5元,一个B型口罩的售价是7元. (2)设A型口罩x个,依题意有:
,
解得35≤x≤37.5, ∵x为整数, ∴x=35,36,37. 方案如下: 方案 A型口罩 B型口罩 一 二 三 35 36 37 15 14 13 设购买口罩需要y元,则y=5x+7(50﹣x)=﹣2x+350,k=﹣2<0,
第28页(共32页)
∴y随x增大而减小, ∴x=37时,y的值最小.
答:有3种购买方案,其中方案三最省钱.
【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式组的应用等知识,根据题意得出正确的等量关系是解题关键.
28.(10分)(2017?黑龙江)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+
=0(OA>OC),直
线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD= (1)求点B的坐标; (2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.
【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标; (2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为?BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′,可分别得到S与t的函数关系式.
第29页(共32页)
【解答】解: (1)∵|x﹣15|+∴x=15,y=13,
∴OA=BC=15,AB=OC=13, ∴B(15,13);
(2)如图1,过D作EF⊥OA于点E,交CB于点F,
=0,
由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°, ∵tan∠CBD=, ∴
=,且BF2+DF2=BD2=152,解得BF=12,DF=9,
∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,
∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°, ∴∠ONM=∠CBD, ∴
=,
∵DE∥ON, ∴∴
=
=,且OE=3, =,解得OM=6,
∴ON=8,即N(0,8), 把N、B的坐标代入y=kx+b可得∴直线BN的解析式为y=x+8;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,
第30页(共32页)
,解得,
…… 此处隐藏:1073字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [实用模板]第八章:法国“新浪潮”与“左岸派”
- [实用模板]2021年北京上半年临床医学检验技师生物
- [实用模板]SAP GUI 7.10客户端安装配置文档
- [实用模板]2001年临床执业医师资格考试综合笔试试
- [实用模板]36机场工作实用英语词汇总结
- [实用模板](一)社会保险稽核通知书
- [实用模板]安全教育主题班会材料
- [实用模板]濉溪县春季呼吸道传染病防控应急演练方
- [实用模板]长沙房地产市场周报(1.30-2.3)
- [实用模板]六年级数学上册典中点 - 图文
- [实用模板]C程序设计(红皮书)习题官方参考答案
- [实用模板]中国证监会第一届创业板发行审核委员会
- [实用模板]桥梁工程复习题
- [实用模板]2011学而思数学及答案
- [实用模板]初中病句修改专项练习
- [实用模板]监理学习知识1 - 图文
- [实用模板]小机灵杯四年级试题
- [实用模板]国贸专业毕业论文模板
- [实用模板]教育学概论考试练习题-判断题4
- [实用模板]2015届高考英语一轮复习精品资料(译林
- 00Nkmhe_市场营销学工商管理_电子商务_
- 事业单位考试法律常识
- 诚信教育实施方案
- 吉大小天鹅食品安全检测箱方案(高中低
- 房地产销售培训资料
- 高一地理必修1复习提纲
- 新概念英语第二册lesson_1_练习题
- 证券公司内部培训资料
- 小学英语时间介词专项练习
- 新世纪英语专业综合教程(第二版)第1册U
- 【新课标】浙教版最新2018年八年级数学
- 工程建设管理纲要
- 外研版 必修一Module 4 A Social Surve
- Adobe认证考试 AE复习资料
- 基于H.264AVC与AVS标准的帧内预测技术
- 《食品检验机构资质认定管理办法》(质
- ABB变频器培训课件
- (完整版)小学说明文阅读练习题及答案
- 深思洛克(SenseLock) 深思IV,深思4,深
- 弟子规全文带拼音




