2017年黑龙江省龙东地区中考数学试卷(农垦、森工用)(5)
15.(3分)(2017?黑龙江)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )
A. B. C. D.
【分析】根据特殊点的实际意义即可求出答案.
【解答】解:先注甲池水未达连接地方时,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升, 故选:D.
【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
16.(3分)(2017?黑龙江)若关于x的分式方程取值范围是( ) A.a≥1
B.a>1
C.a≥1且a≠4
D.a>1且a≠4
的解为非负数,则a的
【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可. 【解答】解:去分母得:2(2x﹣a)=x﹣2, 解得:x=由题意得:
, ≥0且
≠2,
解得:a≥1且a≠4, 故选:C.
第16页(共32页)
【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.
17.(3分)(2017?黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是( ) A.22 B.20 C.22或20 D.18
【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.
【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB. ∵AE平分∠BAD, ∴∠BAE=∠DAE, ∴∠BAE=∠BEA, ∴AB=BE,BC=BE+EC, ①当BE=3,EC=4时,
平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20. ②当BE=4,EC=3时,
平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22. 故选:C.
【点评】本题考查平行四边形的性质、等腰三角形的判定;根据题意判断出AB=BE是解答本题的关键.
18.(3分)(2017?黑龙江)如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是( )
第17页(共32页)
A.1<x<6 B.x<1 C.x<6 D.x>1
【分析】观察图象得到:当1<x<6时,一次函数y2的图象都在反比例函数y1的图象的上方,即满足y1<y2.
【解答】解:由图形可知:若y1<y2,则相应的x的取值范围是:1<x<6; 故选A.
【点评】本题考查了反比例函数与一次函数的交点问题,利用数形结合的思想解决此类问题.
19.(3分)(2017?黑龙江)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有( ) A.2种 B.3种 C.4种 D.5种
【分析】直接根据题意假设出未知数,进而得出不等式进而分析得出答案. 【解答】解:设建造A种类型的温室大棚x个,建造B种类型的温室大棚y个,根据题意可得: 6x+7y≤20,
当x=1,y=2符合题意; 当x=2,y=1符合题意; 当x=3,y=0符合题意; 故建造方案有3种. 故选:B.
【点评】此题主要考查了二元一次方程的应用,正确表示出建造两种大棚的费用是解题关键.
20.(3分)(2017?黑龙江)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2
﹣2.
第18页(共32页)
A.2 B.3 C.4 D.5
【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可. 【解答】解:∵四边形ABCD是正方形,
∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°, 在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS), ∴∠ABE=∠DCF, 在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS), ∴∠DAG=∠DCF, ∴∠ABE=∠DAG, ∵∠DAG+∠BAH=90°, ∴∠BAE+∠BAH=90°, ∴∠AHB=90°,
∴AG⊥BE,故③正确, 同法可证:△AGB≌△CGB, ∵DF∥CB, ∴△CBG∽△FDG,
∴△ABG∽△FDG,故①正确,
∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,
第19页(共32页)
又∵∠DAG=∠FCD,
∴S△HDG:S△HBG=tan∠FCD,tan∠DAG,故④正确 取AB的中点O,连接OD、OH, ∵正方形的边长为4, ∴AO=OH=×4=2, 由勾股定理得,OD=
=2
,
由三角形的三边关系得,O、D、H三点共线时,DH最小, DH最小=2
﹣2.
无法证明DH平分∠EHG,故②错误, 故①③④⑤正确, 故选C.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,三角形的三边关系,勾股定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,难点在于⑤作辅助线并确定出DH最小时的情况.
三、解答题(满分60分)
21.(5分)(2017?黑龙江)先化简,再求值:(﹣2,0,3当中选一个合适的数代入求值.
【分析】先化简分式,然后根据分式有意义的条件即可求出m的值,从而可求出原式的值. 【解答】解:原式=(==
﹣)÷,请在2,
﹣×
)×
×﹣
﹣
第20页(共32页)
…… 此处隐藏:720字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [实用模板]第八章:法国“新浪潮”与“左岸派”
- [实用模板]2021年北京上半年临床医学检验技师生物
- [实用模板]SAP GUI 7.10客户端安装配置文档
- [实用模板]2001年临床执业医师资格考试综合笔试试
- [实用模板]36机场工作实用英语词汇总结
- [实用模板](一)社会保险稽核通知书
- [实用模板]安全教育主题班会材料
- [实用模板]濉溪县春季呼吸道传染病防控应急演练方
- [实用模板]长沙房地产市场周报(1.30-2.3)
- [实用模板]六年级数学上册典中点 - 图文
- [实用模板]C程序设计(红皮书)习题官方参考答案
- [实用模板]中国证监会第一届创业板发行审核委员会
- [实用模板]桥梁工程复习题
- [实用模板]2011学而思数学及答案
- [实用模板]初中病句修改专项练习
- [实用模板]监理学习知识1 - 图文
- [实用模板]小机灵杯四年级试题
- [实用模板]国贸专业毕业论文模板
- [实用模板]教育学概论考试练习题-判断题4
- [实用模板]2015届高考英语一轮复习精品资料(译林
- 00Nkmhe_市场营销学工商管理_电子商务_
- 事业单位考试法律常识
- 诚信教育实施方案
- 吉大小天鹅食品安全检测箱方案(高中低
- 房地产销售培训资料
- 高一地理必修1复习提纲
- 新概念英语第二册lesson_1_练习题
- 证券公司内部培训资料
- 小学英语时间介词专项练习
- 新世纪英语专业综合教程(第二版)第1册U
- 【新课标】浙教版最新2018年八年级数学
- 工程建设管理纲要
- 外研版 必修一Module 4 A Social Surve
- Adobe认证考试 AE复习资料
- 基于H.264AVC与AVS标准的帧内预测技术
- 《食品检验机构资质认定管理办法》(质
- ABB变频器培训课件
- (完整版)小学说明文阅读练习题及答案
- 深思洛克(SenseLock) 深思IV,深思4,深
- 弟子规全文带拼音




