五年级数学思维能力提升(奥数)讲义上册(6)
【例题5】 如下图(a)四个小三角形的顶点处有六个圆圈。如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数的和相等。问这六个质数的积是多少?
练习5:
1.将九个不同的自然数填入下面方格中,使每行、每列、每条对角线上三个数的积都相等。
2.将1——9九个自然数分别填入下图的九个小三角形中,使靠近大三角形每条边上五个数的和相等,并且尽可能大。这五个数之和最大是多少?
3.将1——9九个数分别填入下图○内,使外三角形边上○内数之和等于里面三角形边上○内数之和。
第11讲 周期问题
一、知识要点
周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
二、精讲精练 【例题1】 流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?
练习1:
1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?
2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?
3.1/7=0.142857142857……,小数点后面第100个数字是多少?
【例题2】 有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?
练习2: 1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?
2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?
3.在100米长的跑道两侧每隔2米站着一个同学。这些同学以一端开始,按先两个女生,再一个男生的规律站立着。这些同学中共有多少个女生?
【例题3】 2001年10月1日是星期一,那么,2002年1月1日是星期几?
练习3:
1.2002年1月1日是星期二,2002年的六月一日是星期几?
2.如果今天是星期五,再过80天是星期几?
3.以今天为标准,算一算今年自己的生日是星期几?
【例题4】 将奇数如下图排列,各列分别用A、
A B C D E
B、C、D、E为代表,问:2001所在的列以哪个字
1 3 5 7
母为代表?
15 13 11 9
17 19 21 23
31 29 27 25 … … … …
… … … …
练习4:
1.将偶数2、4、6、8、……按下图依次排列,2014出现在哪一列?
2.把自然数按下列规律排列,865排在哪一列?
A B C D E 8 6 4 2
10 12 14 16 24 22 20 18
26 28 30 32
A B C D 1 2 3
6 5 4 7 8 9
12 11 10
… … … … … … …
… … … … … … …
3.
上表中,将每列上下两个字组成一组,如第一组为(小热),第二组为(学爱)。求第460组是什么?
【例题5】 888……8[100个8]÷7,当商是整数时,余数是几? 练习5:
1.444……4[100个4]÷3当商是整数时,余数是几? 2.444……4[100个4]÷6当商是整数时,余数是几? 3.111……1[1000个1]÷7当商是整数时,余数是几?
第12讲 盈亏问题
一、知识要点
盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。解题时我们可以记住: 1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数; 2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数; 3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。 二、精讲精练
【例题1】 某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。乒乓球队共有多少名学生?
练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。学校买来两种粉笔各多少盒?
2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。两堆货物一共有多少吨?
3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。这些优秀学生中男、女生各多少人?
【例题2】 幼儿园老师拿出苹果发给小朋友。如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。有多少个小朋友?共有多少个苹果?
练习2:1.给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。有多少个小朋友?有多少个梨?
2.老把一些铅笔奖给三好学生。每人5支则多4支,每人7支则少4支。老师有多少支铅笔?奖给多少个三好学生?
3.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每船坐6人;如果减少一条船,正好每条船上坐9人。这个班一共有多少个同学?
【例题3】 幼儿园老师将一筐苹果分给小朋友。如果分给大班的学生每人5个余10个;如果分给小班的学生每人8个缺2个。已知大班比小班多3人,这筐苹果有多少个?
练习3:1.一些学生搬一批砖,每人搬4块,其中5人要搬两次;如果每人搬5块,就有两人没有砖可搬。这些学生有多少人?这批砖有多少块?
2.老师给幼儿园小朋友分糖,每人3块还多10块;如果减少2个小朋友再分,每人4块还多7块。原来有多少个小朋友?有多少块糖?
3.筑路队计划每天筑路720米,正好按期筑完。实际每天多筑80米,这样,比原计划提前3天完成了筑路任务。要筑的路有多长?
【例题4】 幼儿园教师把 …… 此处隐藏:1670字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [资格考试]机械振动与噪声学部分答案
- [资格考试]空调工程课后思考题部分整合版
- [资格考试]电信登高模拟试题
- [资格考试]2018年上海市徐汇区中考物理二模试卷(
- [资格考试]坐标转换及方里网的相关问题(椭球体、
- [资格考试]语文教研组活动记录表
- [资格考试]广东省2006年高应变考试试题
- [资格考试]LTE学习总结—后台操作-数据配置步骤很
- [资格考试]北京市医疗美容主诊医师和外籍整形外科
- [资格考试]中学生广播稿400字3篇
- [资格考试]CL800双模站点CDMA主分集RSSI差异过大
- [资格考试]泵与泵站考试复习题
- [资格考试]4个万能和弦搞定尤克里里即兴弹唱(入
- [资格考试]咽喉与经络的关系
- [资格考试]《云南省国家通用语言文字条例》学习心
- [资格考试]标准化第三范式
- [资格考试]GB-50016-2014-建筑设计防火规范2018修
- [资格考试]五年级上册品社复习资料(第二单元)
- [资格考试]2.对XX公司领导班子和班子成员意见建议
- [资格考试]关于市区违法建设情况的调研报告
- 二0一五年下半年经营管理目标考核方案
- 2014年春八年级英语下第三次月考
- 北师大版语文二年级上册第十五单元《松
- 2016国网江苏省电力公司招聘高校毕业生
- 多渠道促家长督导家长共育和谐 - 图文
- 2018 - 2019学年高中数学第2章圆锥曲线
- 竞争比合作更重要( - 辩论准备稿)课
- “案例积淀式”校本研训的实践与探索
- 新闻必须客观vs新闻不必客观一辩稿
- 福师大作业 比较视野下的外国文学
- 新编大学英语第二册1-7单元课文翻译及
- 年产13万吨天然气蛋白项目可行性研究报
- 河南省洛阳市2018届高三第二次统一考试
- 地下车库建筑设计探讨
- 南京大学应用学科教授研究方向汇编
- 2018年八年级物理全册 第6章 第4节 来
- 毕业论文-浅析余华小说的悲悯性 - 以《
- 2019年整理乡镇城乡环境综合治理工作总
- 广西民族大学留学生招生简章越南语版本
- 故宫旧称紫禁城简介




