教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 法律文档 >

利用导数证明不等式的常见题型及解题技巧

来源:网络收集 时间:2026-01-24
导读: 利用导数证明不等式的常见题型及解题技巧 云南省文山州砚山一中,(663100) 马兴奎 趣题引入 (2004年,全国卷)已知函数g(x) xlnx a b) (b a)ln2 2 分析:本题是2004年全国卷理科压轴题,主要考查利用导数证明不等式的能力。 a x) 证明:g (x) lnx 1,设F(

利用导数证明不等式的常见题型及解题技巧

云南省文山州砚山一中,(663100) 马兴奎

趣题引入

(2004年,全国卷)已知函数g(x) xlnx

a b) (b a)ln2 2

分析:本题是2004年全国卷理科压轴题,主要考查利用导数证明不等式的能力。

a x) 证明:g (x) lnx 1,设F(x) g(a) g(x) 2g(2

a x1a xa xF (x) g'(x) 2g'() g'(x) g'() lnx ln 2222 设0 a b,证明:0 g(a) g(b) 2(

当0 x a时 F (x) 0,当x a时 F (x) 0,

即F(x)在x (0,a)上为减函数,在x (a, )上为增函数

∴F(x)min F(a) 0,又b a ∴F(b) F(a) 0, a b) 0 2

a x) (x a)ln2 设G(x) g(a) g(x) 2g(2

a x G (x) lnx ln ln2 lnx ln(a x) 2即g(a) g(b) 2g(

当x 0时,G'(x) 0,因此G(x)在区间(0, )上为减函数;

因为G(a) 0,又b a ∴G(b) G(a) 0,

a x) (x a)ln2 0 2

a x) (x a)ln2 故g(a) g(x) 2g(2即 g(a) g(x) 2g(

a b) (b a)ln2 2

本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。 综上可知,当 0 a b时,0 g(a) g(b) 2(

技巧精髓

一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

1、利用题目所给函数证明

【例1】 已知函数f(x) ln(x 1) x,求证:当x 1时, 1 ln(x 1) x x 1

分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数

1g(x) ln(x 1) 1,从其导数入手即可证明。 x 1

1x 1 【绿色通道】f (x) x 1x 1恒有1

∴当 1 x 0时,f (x) 0,即f(x)在x ( 1,0)上为增函数

当x 0时,f (x) 0,即f(x)在x (0, )上为减函数

故函数f(x)的单调递增区间为( 1,0),单调递减区间(0, )

于是函数f(x)在( 1, )上的最大值为f(x)max f(0) 0,因此,当x 1时,f(x) f(0) 0,即ln(x 1) x 0∴ln(x 1) x (右面得证),现证左面,令g(x) ln(x 1) 111x 1, 则g (x) x 1x 1(x 1)2(x 1)2

当x ( 1,0)时,g (x) 0;当x (0, )时,g (x) 0 ,

即g(x)在x ( 1,0)上为减函数,在x (0, )上为增函数,

故函数g(x)在( 1, )上的最小值为g(x)min g(0) 0,

1 1 0 x 1

11 1 ln(x 1) x ∴ln(x 1) 1 ,综上可知,当x 1时,有x 1x 1

【警示启迪】如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x) f(a)(或

f(x) f(a)),那么要证不等式,只要求函数的最大值不超过0就可得证.

2、直接作差构造函数证明

12【例2】已知函数f(x) x lnx. 求证:在区间(1, )上,函数f(x)的图象在函数2

2g(x) x3的图象的下方; 3

分析:函数f(x)的图象在函数g(x)的图象的下方 不等式f(x) g(x)问题, ∴当x 1时,g(x) g(0) 0,即ln(x 1)

12212x lnx x3,只需证明在区间(1, )上,恒有x2 lnx x3成立,2323

1设F(x) g(x) f(x),x (1, ),考虑到F(1) 0 6

要证不等式转化变为:当x 1时,F(x) F(1),这只要证明: g(x)在区间(1, )是增函数即可。

2312【绿色通道】设F(x) g(x) f(x),即F(x) x x lnx, 32即

1(x 1)(2x2 x 1)则F (x) 2x x = xx2

(x 1)(2x2 x 1)当x 1时,F (x)= x

从而F(x)在(1, )上为增函数,∴F(x) F(1)

∴当x 1时 g(x) f(x) 0,即f(x) g(x), 1 0 6

23x的图象的下方。 3

【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移

项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。读者也可以设F(x) f(x) g(x)做一做,深刻体会其中的思想方法。

3、换元后作差构造函数证明

111【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln( 1) 2 3 nnn

都成立.

1 分析:本题是山东卷的第(II)问,从所证结构出发,只需令 x,则问题n故在区间(1, )上,函数f(x)的图象在函数g(x)

转化为:当x 0时,恒有ln(x 1) x2 x3成立,现构造函数h(x) x3 x2 lnx( 1),求导即可达到证明。

【绿色通道】令h(x) x x ln(x 1), 32

13x3 (x 1)2

则h (x) 3x 2x 在x (0, )上恒正, x 1x 12

所以函数h(x)在(0, )上单调递增,∴x (0, )时,恒有h(x) h(0) 0, 即x3 x2 ln(x 1) 0,∴ln(x 1) x2 x3

对任意正整数n,取x 1111 (0, ),则有ln( 1) 2 3 nnnn

【警示启迪】我们知道,当F(x)在[a,b]上单调递增,则x a时,有F(x) F(a).如果f(a)= (a),要证明当x a时,f(x) (x),那么,只要令F(x)=f(x)- (x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x) 0即可.

4、从条件特征入手构造函数证明

【例4】若函数y=f(x)在R上可导且满足不等式xf (x)>-f(x)恒成立,且常数a,b满

足a>b,求证:.af(a)>bf(b)

【绿色通道】由已知 xf (x)+f(x)>0 ∴构造函数 F(x) xf(x),

则F'(x) xf (x)+f(x)>0, 从而F(x)在R上为增函数。

a b ∴F(a) F(b) 即 af(a)>bf(b)

【警示启迪】由条件移项后xf (x) f(x),容易想到是一个积的导数,从而可以构造

函数F(x) xf(x),求导即可完成证明。若题目中的条件改为xf (x) f(x),则移项后xf (x) f(x),要想到是一个商的导数的分子,平时解题多注意总结。

【思维挑战】

1、(2007年,安徽卷) 设a 0,f(x) x 1 ln2x 2alnx

2求证:当x 1时,恒有x lnx 2alnx 1,

2、(2007年,安徽卷)已知定义在正实数集上的函数

52122b a 3a2lna, 其中a>0,且f(x) x 2ax,g(x) 3alnx b,22

求证:f(x) g(x)

3、已知函数f(x) ln(1 x)

b 恒有lna lnb 1 . ax,求证:对任意的正数a、b, 1 x

4、(2007年,陕西卷)f(x)是定义在(0,+∞)上的非负可导函数,且满足

xf (x) f(x)≤0,对任意正数a、b,若a < b,则必有

( )

(A)af (b)≤bf (a) (C)af (a)≤f (b)

【答案咨询】 (B)bf (a)≤af (b) (D)bf (b)≤f (a)

xxx ∴f (x) 0,即f(x)在(0, )内单调递增,故当x 1时,

f(x) f(1) 0,∴当x 1时,恒有x ln2x 2alnx 1 1、提示:f (x) 1 2lnx 2a,当x 1,a 0时,不难证明2lnx 1

123a222、提示:设F(x) g(x) f(x) x 2ax 3alnx b则F (x) x 2a 2x

=(x a)(x 3a) (x 0) a 0,∴ 当x a时,F (x) 0, x 故F(x)在(0,a)上为减函数,在(a, )上为增函数,于是函数F(x)

在(0, )上的最小值是F(a) f(a) g(a) 0,故当x 0时,有f(x) g(x) 0,即f(x) g(x)

3、提示:函数f(x)的定义域为( 1, ),f (x) 11x 1 x(1 x)2(1 x)2∴当 1 x 0时,f (x) 0,即f(x)在x ( 1,0)上为减函数 当x 0时,f (x) 0,即f(x)在x (0, )上为增函数

因此在x 0时,f(x)取得极小值f(0) 0,而且是最小值 x1, …… 此处隐藏:2187字,全部文档内容请下载后查看。喜欢就下载吧 ……

利用导数证明不等式的常见题型及解题技巧.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/1418637.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)