2013年考研数学二试题答案
2013年考研数学二试题答案
2013年全国硕士研究生入学统一考试数学二试题答案
一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. ...(1) 设cosx 1 xsin (x),其中 (x)
2
,则当x 0时, (x)是 ( )
(A) 比x高阶的无穷小 (B) 比x低阶的无穷小
(C) 与x同阶但不等价的无穷小 (D) 与x等价的无穷小 【答案】(C)
【解析】 cosx 1 x sin (x),cosx 1~
12x 2
11
x sin (x)~ x2 sin x() x
22
1
又 sin (x)~ (x) (x)~ x
2
(x)与x同阶但不等价的无穷小. 所以选(C).
(2) 设函数y f(x)由方程cos(xy) lny x 1确定,则limn[f() 1] ( )
n
2
n
(A)2 (B)1 (C)-1 (D)-2 【答案】(A)
【解析】因为x 0时,y 1即f(0) 1.
2
f() f(0)
2
limn f() 1 lim2 2f'(0) 2y'x 0 n n 2 n 0
n
又 cos(xy) lny x 1
1
y' 1 0, y
将x 0,y 1,代入上式得y' 1.
两边对x求导得: sin(xy) y
选(A).
(3) 设函数f(x)
x sinx,0 x
,F(x) f(t)dt,则 ( )
2, x 2
(A)x 是函数F(x)的跳跃间断点 (B)x 是函数F(x)的可去间断点
2013年考研数学二试题答案
(C)F(x)在x 处连续但不可导 (D)F(x)在x= 处可导 【答案】(C)
【解析】因x 是f(x)在 0,2 唯一的第一类间断点,即f(x)在 0,2 可积,故
F(x) f(t)dt在 0,2 连续.
x
因x 是f(x)的第一类间断点,故F(x)在x 不可导. 所以选(C).
1
(x 1) 1,1 x e
(4) 设函数f(x) ,若反常积分 f(x)dx收敛,则 ( )
1
1
,x e 1 xlnx
(A) 2 (B) 2 (C) 2 0 (D)0 2
【答案】(D) 【解析】
1
f(x)dx
e
1
11
1 1 e(x 1)xlnx
e
1
1
dx,x 1是瑕点,故 1 1时,瑕积分收敛.
(x 1) 1
11 dx (lnx),要使其收敛,需 0. 1
exlnx
e
综上所述0 2 选(D). (5)设z
x z zy
( ) f(xy),其中函数f可微,则
y x yx
'
'
(A) 2yf(xy) (B) 2yf(xy) (C) 【答案】(A)
22
f(xy) (D) f(xy) xx
zyyyyy2
f'(xy) 【解析】 =(f(xy))'=-2f(xy)+f'(xy) y=-2f(xy)+
xxxxxxx z1
-f(xy)+yf'(xy) y xx z1y1
f(xy) f'(xy) x=f(xy)+yf'(xy)
yxxxx z z
+=2yf'(xy) 选(A).
y x y
2013年考研数学二试题答案
(6)设Dk是圆域D (x,y)|x y 1在第k象限的部分,记
( ) Ik (y x)dxdy(k 2,2,3,4)则
Dk
22
(A) I1 0 (B)I2 0 (C) I3 0 (D) I4 0 【答案】(B)
【解析】 第二象限中y 0,x 0,始终y x 即 y x 0 I2>0 选(B). (7) 设A,B,C均为n阶矩阵,若AB C,且B可逆,则 ( )
(A) 矩阵C的行向量组与矩阵A的行向量等价 (B) 矩阵C的列向量组与矩阵A的列向量等价 (C) 矩阵C的行向量组与矩阵B的行向量等价 (D) 矩阵C的列向量组与矩阵B的列向量等价 【答案】(B) 【解析】将A、C按列分块,A ( 1,..., n),C ( 1,..., n) 由于AB C,故
b11...b1n
( 1,..., n) ..... ( 1,..., n)
b...b
nn n1
即 1 b11 1 ... bn1 n,..., n b1n 1 ... bnn n 即C的列向量组可由A的列向量线性表示
由于B可逆,故A CB,A的列向量组可由C的列向量组线性表示 选(B).
1
1a1 200
(8) 矩阵 aba 与 0b0 相似的充分必要条件为 ( )
1a1 000
(A)a 0,b 2 (B)a 0,b为任意实数 (C) a 2,b 0 (D)b 0,a为任意实数 【答案】(B)
1a1 200
【解析】令A aba ,B= 0b0 ,
1a1 000
因为A为实对称矩阵,B为对角阵,则A与B相似的充要条件是A的特征值分别为2,b,0
2013年考研数学二试题答案
1
A的特征方程 A E
a 1
a 1
a 1 a 1
b
a a
1
a 0 b
a
1
0
b
a
2
a= 2 b 2a , 1
因为 2是A的特征值,所以2A E 0 所以 2a 0,即a 0.
当a 0时, A E 2 b ,
2
A的特征值分别为2,b,0所以b为任意常数即可. 故选(B).
文章资料由经济学金融考研网整理发布。
二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. ...
ln(1 x)1
)x ____________. (9) lim(2
x 0x
【答案】e.
1
2
ln(1 x)
) e【解析】 lim(2
x 0x
1
xln(1 x)1lim(1
)x 0xx
e
x 0
lim
x ln(1 x)
x
x
x 02x(1 x)lim
12
e
(10)设函数
f(x)
11 xlim
x 02x1
e e.
x
,则y f(x)的反函数x=f 1(y)在y 0处的导数
dxdy
=_______.
y 0
【解析】
2013年考研数学二试题答案
dx1 dyy 0f ( 1)
(11) 设封闭曲线L的极坐标方程为r=cos3 ( 是 . 【答案】
6
6
),则L所围平面图形的面积
12
161 cos6 1 sin6 6 26
【解析】S cos3 d d . 0 2622
6 012
x arctant (12) 曲线 t=1的点处的法线方程为__________.
y ln【答案】y x
4
1
dydy dt t, 【解析】
dxdx dt
1 tdy
tt 1 1.
dxt 1
,y0 ln 4
所以法线方程y y0 1(x x0),即y x .
4
当t 1时 x0 arctan1 (13) 已知y1 e
3x
xe2x,y2 ex xe2x,y3 xe2x是某二阶常系数非齐次线性微分方程的
3个解,则该方程满足条件yx 0 0,y'x 0 1的解为y=____________. 【答案】e
3x
ex xe2x
3x
【解析】y1 y2 e
ex,y1 y3 e3x
故该方程组的通解为y C1e而满足初始条件的解为y e
3x
3x
ex C2e3x xe2x.由y(0) 0,y (0) 1,得C1 1,C2 0.从
ex xe2x.
2013年考研数学二试题答案
(14) 设A (aij)是3阶非零矩阵,A为A …… 此处隐藏:2635字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [初中教育]婚姻家庭法学教学教案
- [初中教育]浅谈小学语文教学中的创新教育
- [初中教育]中华人民共和国侵权责任法2009
- [初中教育]2016-2022年中国薄膜太阳能电池行业发
- [初中教育]多级轻型井点降水的应用
- [初中教育]外语教学法流派介绍和简评
- [初中教育]实验一、典型环节及其阶跃响应
- [初中教育]内蒙古2012-2013学年度国家奖学金获奖
- [初中教育]移动通信营销渠道管理探讨
- [初中教育]初三化学第一学期第一第二章基础知识点
- [初中教育]一天的食物教学设计
- [初中教育]光导照明系统的基本结构及工作原理
- [初中教育]长春市十一高、东北师范大学附属中学、
- [初中教育]“十三五”规划重点-配重式装卸车项目
- [初中教育]领导方法和领导艺术
- [初中教育]第三章 植物病虫草鼠害诊断与防治基
- [初中教育]2019届九年级语文上册 第二单元 6纪念
- [初中教育]甲级单位编制水豆腐项目可行性报告(立
- [初中教育]Ch8-1补充 09101数据库系统原理及应用-
- [初中教育]2017-2023年中国吊装设备行业市场分析
- 制作毕业纪念册需要哪些材料
- 2015-2016学年高二化学苏教版选修4课件
- 哈佛管理导师-创建商业案例
- 职场交际中的谈吐礼仪知识与职场会议接
- 中国糕点及面包行业发展现状与竞争战略
- 沂河“12·7”洪水茶山拦河坝
- 管道水流量计算公式
- 4-2发电机火灾事故处置方案
- 数字信号处理实验五
- 2009年经济师(中级)金融专业知识全真试
- 历史街区保护规划--04历史文化遗产保护
- 宁夏回族自治区中小学职称评价标准
- 评先评优测评表
- 圆的切线证明及线段长求解在在中考中的
- 【解析版】2015年江苏省南京外国语学校
- 人教版八年级上册科学第一章习题精华
- 责任心与执行力
- SA8000社会责任管理体系标准培训
- IgA肾病的饮食应注意
- 杭州市建设工程文件归档整理方案(试行)