平面几何经典难题及解答
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.
A
D
2、已知:如图,P是正方形ABCD内一点,∠PAD=∠PDA=15. 求证:△PBC是正三角形.
B
C
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、
CC1、DD1的中点.
D
求证:四边形A2B2C2D2是正方形.(初二) A2 A1
1
CB2
2
A
E
O
F
D B
C
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC
的延长线交MN于E、F.
求证:∠DEN=∠F.
B
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
1、已知:△ABC中,H为垂心(各边高线的交点),O
(1)求证:AH=2OM; (2)若∠BAC=60,求证:AH=AO.(初二)
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB
及CD分别交MN于P、Q. 求证:AP=AQ.(初二)
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q. 求证:AP=AQ.(初二)
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.
求证:点P到边AB的距离等于AB的一半.
F
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F. 求证:AE=AF.(初二)
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE. 求证:PA=PF.(初二)
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求:∠APB的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二)
3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·
4、平行四边形ABCD中,设E
、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二)
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
经典难题(五)
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC
,求证:
≤L<2.
2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC
0,
∠EBA=20,求∠BED的度数.
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
经典难题解答:
经典难题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得
EOGF
=
GOGH
=
COCD
,又CO=EO,所以CD=GF得证。
2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得 △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150
所以∠DCP=30,从而得出△PBC是正三角形
3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点, 连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点, 由A2E=1A1B1=1B1C1= FB2 ,EB2=1AB=1BC=FC1 ,又∠GFQ+∠Q=900和 2222
∠GEB2+∠Q=90,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 , 又∠GFQ+∠HB2F=90和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 ,
同理可得其他边垂直且相等,
从而得出四边形A2B2C2D2是正方形。
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
经典难题(二)
1.(1)延长AD到F连BF,做OG⊥AF,
又∠F=∠ACB=∠BHD, 可得BH=BF,从而可得HD=DF,
又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM (2)连接OB,OC,既得∠BOC=1200,
从而可得∠BOM=60,
所以可得OB=2OM=AH=AO,
得证。
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。
由于
ADAB
=ACAE
=CDBE
=2FD2BG
=FDBG
,
由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。
又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ, ∠AOP=∠AOQ,从而可得AP=AQ。
4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=
AI+BI
2
AB2
EG+FH
2
。
由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。 从而可得PQ=
=
,从而得证。
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
经典难题(三)
1.顺时针旋转△ADE,到△ABG,连接CG. 由于∠ABG=∠ADE=900+450=1350
从而可得B,G,D在一条直线上,可得△AGB≌△CGB。 推出AE=AG=AC=GC,可得△AGC为等边三角形。 ∠AGB=30,既得∠EAC=30,从而可得∠A EC=75。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF。
2.连接BD作CH⊥DE,可得四边形CGDH是正方形。
由AC=CE=2GC=2CH,
可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,
提供了一些几何中的难题以及解答,能对参加中考的学生起到一定的启发作用。
又∠FAE=90+45+15=150,
从而可知道∠F=15,从而得出AE=AF。
0000
3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。
令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。 tan∠BAP=tan∠EPF=
XY
=
ZY-X+Z
,可得YZ=XY-X+XZ,
2
即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF , 得到PA=PF ,得证 。
经典难题(四)
1. 顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=150 。
提供了一些几何中的难题以及解答,能对参加中考的学 …… 此处隐藏:2683字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [小学教育]四年级综合实践活动课《衣物的洗涤》教
- [小学教育]2014半年工作总结怎么写
- [小学教育]20世纪外国文学专题综合试题及答案
- [小学教育]TS_1循环使用催化丙烯环氧化反应研究
- [小学教育]最实用的考勤签到表(上下班签到表)
- [小学教育]气候与生态建筑——以新疆民居为例
- [小学教育]二人以上股东有限责任公司章程参考样本
- [小学教育]2014届第一轮复习资料4.1,3美好生活的
- [小学教育]土方开挖、降水方案
- [小学教育]手绘儿童绘本《秋天的图画》(蜡笔)
- [小学教育]2002级硕士研究生卫生统计学考试试题
- [小学教育]环保装备重点发展目录
- [小学教育]金蝶K3合并报表培训教材
- [小学教育]岩浆岩试题及参考答案
- [小学教育]知之深爱之切学习心得
- [小学教育]第十二章 蛋白质的生物合成
- [小学教育]Chapter 2-3 Solid structure and basi
- [小学教育]市政道路雨季专项施工方案
- [小学教育]中国海洋大学2012-2013学年第二学期天
- [小学教育]教育心理学第3章-学习迁移
- 浅谈深化国企改革中加强党管企业
- 2006年中国病理生理学会学术活动安排
- 设计投标工作大纲
- 基于ARP的网络攻击与防御
- 2016届湖北省七市(州)教科研协作体高三
- Google_学术搜索及其检索技巧
- 2019-2020学年七年级地理下册6.3美洲教
- 城市道路可研报告
- 【名师指津】2012高考英语 写作基础技
- 6级知识点培训北京师范大学《幼儿智趣
- 注册会计师会计知识点:金融资产
- 新安装 500 kV 变压器介损分析与判断
- PS2模拟器PCSX2设置及使用教程.
- 医院药事管理与药剂科管理组织机构
- {PPT背景素材}丹巴的醉人美景,免费,一
- NAS网络存储应用解决方案
- 青海省西宁市六年级上学期数学期末考试
- 测量管理体系手册依据ISO10012:2003
- 洞子小学培养骨干教师工作计划
- 浅谈《牛津初中英语》的教材特点及教学




