教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 文库大全 > 实用文档 >

Improved representations and hardware implementation of the

来源:网络收集 时间:2025-09-18
导读: Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a partic

Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic A

ImprovedrepresentationsandhardwareimplementationoftheHelmholtzMachine

AlexanderAstaras,RyanDalzell,AlanMurray,RobinWoodburn

Dept.ofElectronicsandElectricalEngineering

TheUniversityofEdinburgh

TheKing’sBuildings,May eldRd,EdinburghEH93JL,Scotland

aa,rwd,afm,martin@ee.ed.ac.uk

April6,2000

Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic A

theBoltzmannMachine.Howeverthesemeth-odssufferfromverylongsettlingtimesinthesamplingwhichcannotbecompensatedforbyahardwareimplementationduetothecomplexityofthealgorithms.TheHelmholtzMachine(HM)isavariantofExpectationMaximisationthatfea-turessimplebinarystochasticunitsandalearn-ingrulewhichissimpleandpurelylocal.Hence,theHMisveryamenabletoimplementationinhardware.2..1.

AdescriptionoftheHelmholtzMa-chine(HM)

TheHM[2,3]isanunsupervised,stochasticneuralnetworkwhichattemptstobuildaprob-abilisticmodelofdatainahierarchicalfashion.Byaprobabilisticmodel,wemeanthatthehid-denunitsofthenetworkchoosestatesaccordingtoaprobabilitydistributionratherthandeterm-inisticallyasinanMLP.TheHMcomprisestwocomplementarynetworks,abottom-up,recogni-tionnetworkandatop-down,generativenetwork(seeFigure1).

TheHMistrainedbythewake-sleepal-gorithm,wherebytwountrainednetworkscaneachprovidethetargetsnecessaryfortheothertolearn;overtimetherecognitionnetworklearnstoextractlatentvariablesfromthedatainitshid-denunits,andthegenerativenetworklearnstoreproducethedatadistributionfromthesevari-ables.Asensor-fusionapplicationwouldapplyasimpleclassi ertothehiddenunitsofthere-cognitionnetworktoextractinterestinginforma-tionfromthesystem.Furthermore,examinationoftheconditionalprobabilitiesinthegenerativemodelmayprovideinformationonhowthedata-fusiontaskisbeingperformedandshowifanysensordriftoccursovertime.2..2.

TheapplicationoftheHelmholtzMa-chinetosensor-tracking

TotestthehypothesisthattheHMcanbeusedfortrackingnon-stationaritiesinanenvironmentwithoutseriousalterationtoitsoriginalinternalmodel,severalsimulationswereperformed.Thedatasetusedwasamixturemodelwithfourmix-tures,eachofwhichspeci edaprobabilitydis-tributionovernineindependentbinaryvariables.Thedetailsofthedistributionsusedarethesameasin[1].AtwolayerHMwithnineinputunitsandsixhiddenunitswastrainedonthedata.TheperformancemeasureusedwasHelmholtzFreeEnergy(HFE),whichisthecostfunctionminimisedbytheHelmholtzMachineandisno-tionallyequivalenttothenegative-logprobabil-

ityofthedataunderthemodel[2].Wake-sleeplearningwasperformeduntiltheHFEstabilisedandthenoneoftheinputunit’sdistributionswasslowlydrifted.Twoexperimentalrunswereper-formed,onewithlearningduringdriftandan-otherwithout.TheresultsarepresentedinFig-ures2and3.Ascanbeseen,thedriftoccurredbetweenepoch120000and150000.

Drift without wake-sleep learning

9.298.8y

8.6grenE8.4 eerF8.2 ztloh8mleH7.87.67.47.2

02000040000

6000080000100000180000200000

Number of Epochs

Figure2:Simulationswithoutcontinuouslearn-ing.

Figure2plotstheHFEduringthesimulationrunwhentrainingwasstoppedoncetheHFEhadstabilisedonthestaticdata(epoch100000).Itclearlyshowsthedetrimentaleffectofasingledriftinginputontheperformanceofthenetwork.

Drift with wake-sleep learning

98.8

8.6

y

gr8.4

enE e8.2

erF ztl8

ohmleH7.8

7.6

7.4

7.2

020000400006000080000100000180000200000

Number of Epochs

Figure3:Simulationswithcontinuouslearning.Figure3isidenticalexceptthattrainingoccursthroughoutthesimulation.Heretheonsetofdriftisclear,butthewake-sleepalgorithmquicklybe-ginstoaccountforitandtocorrecttheinternalmodeltomatchthedata,keepingtheHFElowandeventuallyreturningittoitsoriginalvalue.

Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic A

2..3.

De cienciesoftheBinaryHelmholtzMachine

Althoughtheaboveresultsareencouraging,thedatasetisconstructedtobesuitableforabinary-valuednetwork.Thedistributionofeachunitisindependentofanyotherandtheinputdataisinherentlybinary.Althoughitmaybepossibletohaveanarrayofbinaryvaluedsensors,eachactingeffectivelyasfeaturedetectors,indicatingwhetheravalueisaboveorbelowaparticularthreshold,orindicatingthepresenceorabsenceofaparticularsubstance,thisislikelytobeun-common.HencesomethoughthasbeengiventoexpandingtherepresentationalpoweroftheHM,andinparticularofbeingabletousecontinuousdata,ascommonlyavailablefromasensor.2..4.

ImprovingtheRepresentationswithaDiscreteHelmholtzMachine

Theobviousenhancementtorepresentationalpoweristouseunitswhichhavealargernum-berofstates,eitherdiscreteorcontinuous.Inthissectionsomeworkonusingadiscretenumberofstatesforeachunitispresented.TheHMcanbegeneralisedquiteeasilytothiscaseandtheequa-tionsfortheoperationandlearningofitareverysimilartothebinaryvaluedHelmholtzMachine.Howeversomenewproblemsalsoappear.Wedenotethenumberofstatesforunitsaswithindexwithandindexthenumber.Thenofeachstatesunitforunitsasnowhasabiasforeachstateandanumberofweightsequalto,denotedfortherecognitionweightsandforthegener-ativeweights(seeFigure1(b)).Theprobabilitydistributionoverstatesforaunitisnowgivenbythegeneralisedlogisticfunction,orSoftmaxfunction:

(1)

(2)

where:istheinputactivationforstate;isthebiasweightforunitandstate;

istheweightfromunitwhenitisinstatetounit …… 此处隐藏:11234字,全部文档内容请下载后查看。喜欢就下载吧 ……

Improved representations and hardware implementation of the.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wenku/1804543.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)