Improved representations and hardware implementation of the
Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic A
ImprovedrepresentationsandhardwareimplementationoftheHelmholtzMachine
AlexanderAstaras,RyanDalzell,AlanMurray,RobinWoodburn
Dept.ofElectronicsandElectricalEngineering
TheUniversityofEdinburgh
TheKing’sBuildings,May eldRd,EdinburghEH93JL,Scotland
aa,rwd,afm,martin@ee.ed.ac.uk
April6,2000
Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic A
theBoltzmannMachine.Howeverthesemeth-odssufferfromverylongsettlingtimesinthesamplingwhichcannotbecompensatedforbyahardwareimplementationduetothecomplexityofthealgorithms.TheHelmholtzMachine(HM)isavariantofExpectationMaximisationthatfea-turessimplebinarystochasticunitsandalearn-ingrulewhichissimpleandpurelylocal.Hence,theHMisveryamenabletoimplementationinhardware.2..1.
AdescriptionoftheHelmholtzMa-chine(HM)
TheHM[2,3]isanunsupervised,stochasticneuralnetworkwhichattemptstobuildaprob-abilisticmodelofdatainahierarchicalfashion.Byaprobabilisticmodel,wemeanthatthehid-denunitsofthenetworkchoosestatesaccordingtoaprobabilitydistributionratherthandeterm-inisticallyasinanMLP.TheHMcomprisestwocomplementarynetworks,abottom-up,recogni-tionnetworkandatop-down,generativenetwork(seeFigure1).
TheHMistrainedbythewake-sleepal-gorithm,wherebytwountrainednetworkscaneachprovidethetargetsnecessaryfortheothertolearn;overtimetherecognitionnetworklearnstoextractlatentvariablesfromthedatainitshid-denunits,andthegenerativenetworklearnstoreproducethedatadistributionfromthesevari-ables.Asensor-fusionapplicationwouldapplyasimpleclassi ertothehiddenunitsofthere-cognitionnetworktoextractinterestinginforma-tionfromthesystem.Furthermore,examinationoftheconditionalprobabilitiesinthegenerativemodelmayprovideinformationonhowthedata-fusiontaskisbeingperformedandshowifanysensordriftoccursovertime.2..2.
TheapplicationoftheHelmholtzMa-chinetosensor-tracking
TotestthehypothesisthattheHMcanbeusedfortrackingnon-stationaritiesinanenvironmentwithoutseriousalterationtoitsoriginalinternalmodel,severalsimulationswereperformed.Thedatasetusedwasamixturemodelwithfourmix-tures,eachofwhichspeci edaprobabilitydis-tributionovernineindependentbinaryvariables.Thedetailsofthedistributionsusedarethesameasin[1].AtwolayerHMwithnineinputunitsandsixhiddenunitswastrainedonthedata.TheperformancemeasureusedwasHelmholtzFreeEnergy(HFE),whichisthecostfunctionminimisedbytheHelmholtzMachineandisno-tionallyequivalenttothenegative-logprobabil-
ityofthedataunderthemodel[2].Wake-sleeplearningwasperformeduntiltheHFEstabilisedandthenoneoftheinputunit’sdistributionswasslowlydrifted.Twoexperimentalrunswereper-formed,onewithlearningduringdriftandan-otherwithout.TheresultsarepresentedinFig-ures2and3.Ascanbeseen,thedriftoccurredbetweenepoch120000and150000.
Drift without wake-sleep learning
9.298.8y
8.6grenE8.4 eerF8.2 ztloh8mleH7.87.67.47.2
02000040000
6000080000100000180000200000
Number of Epochs
Figure2:Simulationswithoutcontinuouslearn-ing.
Figure2plotstheHFEduringthesimulationrunwhentrainingwasstoppedoncetheHFEhadstabilisedonthestaticdata(epoch100000).Itclearlyshowsthedetrimentaleffectofasingledriftinginputontheperformanceofthenetwork.
Drift with wake-sleep learning
98.8
8.6
y
gr8.4
enE e8.2
erF ztl8
ohmleH7.8
7.6
7.4
7.2
020000400006000080000100000180000200000
Number of Epochs
Figure3:Simulationswithcontinuouslearning.Figure3isidenticalexceptthattrainingoccursthroughoutthesimulation.Heretheonsetofdriftisclear,butthewake-sleepalgorithmquicklybe-ginstoaccountforitandtocorrecttheinternalmodeltomatchthedata,keepingtheHFElowandeventuallyreturningittoitsoriginalvalue.
Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic A
2..3.
De cienciesoftheBinaryHelmholtzMachine
Althoughtheaboveresultsareencouraging,thedatasetisconstructedtobesuitableforabinary-valuednetwork.Thedistributionofeachunitisindependentofanyotherandtheinputdataisinherentlybinary.Althoughitmaybepossibletohaveanarrayofbinaryvaluedsensors,eachactingeffectivelyasfeaturedetectors,indicatingwhetheravalueisaboveorbelowaparticularthreshold,orindicatingthepresenceorabsenceofaparticularsubstance,thisislikelytobeun-common.HencesomethoughthasbeengiventoexpandingtherepresentationalpoweroftheHM,andinparticularofbeingabletousecontinuousdata,ascommonlyavailablefromasensor.2..4.
ImprovingtheRepresentationswithaDiscreteHelmholtzMachine
Theobviousenhancementtorepresentationalpoweristouseunitswhichhavealargernum-berofstates,eitherdiscreteorcontinuous.Inthissectionsomeworkonusingadiscretenumberofstatesforeachunitispresented.TheHMcanbegeneralisedquiteeasilytothiscaseandtheequa-tionsfortheoperationandlearningofitareverysimilartothebinaryvaluedHelmholtzMachine.Howeversomenewproblemsalsoappear.Wedenotethenumberofstatesforunitsaswithindexwithandindexthenumber.Thenofeachstatesunitforunitsasnowhasabiasforeachstateandanumberofweightsequalto,denotedfortherecognitionweightsandforthegener-ativeweights(seeFigure1(b)).Theprobabilitydistributionoverstatesforaunitisnowgivenbythegeneralisedlogisticfunction,orSoftmaxfunction:
(1)
(2)
where:istheinputactivationforstate;isthebiasweightforunitandstate;
istheweightfromunitwhenitisinstatetounit …… 此处隐藏:11234字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [实用文档]李践-有效提升销售的12大黄金法则8-大
- [实用文档]党支部换届工作方案
- [实用文档]2013年下期电子商务专业部宣传工作计划
- [实用文档]方庄一矿通风、钻探绩效工资考核管理办
- [实用文档]项目一 认识企业物流认识企业物流
- [实用文档]MBI_Display_产品蓝图规画
- [实用文档]北京市建筑业劳务作业人员普法维权培训
- [实用文档]锅炉燃烧调整与运行优化
- [实用文档]4支付结算业务的核算
- [实用文档]米什金_货币金融学_第9版各章学习指导
- [实用文档]水泥混凝土路面硬化工程施工组织设计
- [实用文档]钢筋工程安全技术交底书
- [实用文档]关于公布华中师范大学本科毕业论文
- [实用文档]太原市园林绿化施工合同范本 2
- [实用文档]周日辅导 初中英语分类复习单项选择题(
- [实用文档]第四章 文化经纪人的管理形式 第二节
- [实用文档]学宪法讲宪法竞赛题库
- [实用文档]《数值计算方法》期末考试模拟试题二
- [实用文档]爱词霸学英语:每日一句( 十月)
- [实用文档]2014年国家公务员面试:无领导小组讨论
- 新课程主要理念和教学案例分析汇编(24
- 英国人的快乐源于幸福的家庭生活
- 七年级上册第一次月考模拟数学试卷
- 真丝及仿真丝的种类有哪些?
- 【最新】华师大版八年级数学下册第十六
- 高中英语3500个必背单词
- 我可以接受失败,但我不能接受放弃!
- 最近更新沪科版八年级物理上册期末试卷
- 绿化工作先进乡镇事迹材料
- 鲁教版九年级上册思想品德教学计划
- 英语音标的分类
- 地下室底板无梁楼盖与普通梁板结构形式
- 美容师黄金销售话术
- 雅思写作满分作文备考方法
- 血清甲状腺激素测定与高频彩色多普勒超
- 1度浅析装修对室内空气品质的影响
- 2017-2022年中国汞矿行业深度分析与投
- 计算机二级VB公共基础知识
- (何勇)秸秆禁烧_重在寻找出路
- 内外墙抹灰工程分包施工合同1