2019秋湘教版九年级数学上册 教学参考资料一
关于估算的指导思想
“估算”在求解实际生活中一些较为复杂的方程时应用广泛.因初中学生所学知识面所限,在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.其具体的指导思想是:将一元二次方程变形为一般形式:
ax2+bx+c=0,分别将x
1,x
2
代入等式左边,当获得的值为一正、一负时,方程必
定有一根x
0,而且x
1
<x
<x
2
.这是因为,当ax
1
2+bx
1
+c<0(或>0)而ax
2
2+bx
2
+c
>0(或<0)且在x
1到x
2
之间由小变大时,ax2+bx+c的值也将由小于0(或大于
0),逐步变成大于0(或小于0),其间ax2+bx+c的值必有为0的时候,此时的x 值就是原方程的根x
.
时间允许的前提下,建议老师们可以讲述如下例题,以让学生更好地理解估算的指导思想.
例:不解方程,估计方程x2-4x-1=0的根的大小(精确到0.1).
解:分别取x=-0.3与x=-0.2时,有(-0.3)2-4×(-0.3)-1=0.09+1.2-1=0.29>0,(-0.2)2-4×(-0.2)-1=-0.16<0.于是,方程x2-4x-1=0必有一根在-0.3和-0.2之间.
分别取x=4.2与x=4.3时,有4.22-4×4.2-1=-0.16<0,4.32-4×4.3-1=0.29>0.于是,方程x2-4x-1=0必有一根在4.2和4.3之间.
注:如若不能选准所取的x的值,也就无法进行估算,因此,本例中x取的值-0.3、-0.2以及4.2、4.3,是在多次进行实验的基础上获得的.在估算根
的范围时,要进一步提高精确度,这里可以分别考虑取x=
22.0
3.0-
-
=-0.25
和取x=
23.4
2.4+
=4.25时,x2-4x-1的正负情况,这样根的估计就缩小了范围,不断重复以上工作,精确度就会逐步提高.
当然,在估计之初,你是不可能得到这么好的数据的,你一般可以随便估计一个数,如0,发现0的时候,左边小于0,而x正得很多或者负得很多时,对应的左边的值大于0,因此可以再选取两个绝对值比较大的数,这样可以估计出两个根的范围,再逐步逼近.
相关推荐:
- [外语考试]管理学 第13章 沟通
- [外语考试]07、中高端客户销售流程--分类、筛选讲
- [外语考试]2015-2020年中国高筋饺子粉市场发展现
- [外语考试]“十三五”重点项目-汽车燃油表生产建
- [外语考试]雅培奶粉培乐系列适用年龄及特点
- [外语考试]九三学社入社申请人调查问卷
- [外语考试]等级薪酬体系职等职级表
- [外语考试]货物买卖合同纠纷起诉状(范本一)
- [外语考试]青海省实施消防法办法
- [外语考试]公交车语音自动报站系统的设计第3稿11
- [外语考试]logistic回归模型在ROC分析中的应用
- [外语考试]2017-2021年中国隔膜泵行业发展研究与
- [外语考试]神经内科下半年专科考试及答案
- [外语考试]园林景观设计规范标准
- [外语考试]2018八年级语文下册第一单元4合欢树习
- [外语考试]分布式发电及微网运行控制技术应用
- [外语考试]三人行历史学笔记:中世纪人文主义思想
- [外语考试]2010届高考复习5年高考3年联考精品历史
- [外语考试]挖掘机驾驶员安全生产责任书
- [外语考试]某211高校MBA硕士毕业论文开题报告(范
- 用三层交换机实现大中型企业VLAN方案
- 斯格配套系种猪饲养管理
- 涂层测厚仪厂家直销
- 研究生学校排行榜
- 鄱阳湖湿地景观格局变化及其驱动力分析
- 医学基础知识试题库
- 2010山西省高考历年语文试卷精选考试技
- 脉冲宽度法测量电容
- 谈高职院校ESP教师的角色调整问题
- 低压配电网电力线载波通信相关技术研究
- 余额宝和城市商业银行的转型研究
- 篮球行进间运球教案
- 气候突变的定义和检测方法
- 财经大学基坑开挖应急预案
- 高大支模架培训演示
- 一种改进的稳健自适应波束形成算法
- 2-3-鼎视通核心人员薪酬股权激励管理手
- 我国电阻焊设备和工艺的应用现状与发展
- MTK手机基本功能覆盖测试案例
- 七年级地理教学课件上册第四章第一节




