基于LS-DYNA及FLUENT的板壳结构流固耦合分析
基于LS-DYNA及FLUENT的板壳结构流固耦合分析
基于LS-DYNA及FLUENT的板壳结构流固耦合分析
1 前言
在自然界中,流-固耦合现象广泛存在于航空、航天、汽车、水利、石油、化工、海洋以及生物等领域。很多实际问题中流体载荷对于结构的影响不可忽略;同时,结构的位移和变形也会对流场的分布产生重要影响。例如各种水下运动机构都需要考虑这种现象。
板壳是基本的结构单元,研究其与流体相互作用的过程的仿真方法对水下结构的设计具有一定的指导意义。文献利用ANSYS/LS-DYNA对板壳结构在水下爆炸冲击载荷作用下的动力学响应进行了仿真分析和试验研究,文献对窄流道中柔性单板流致振动引起的流-固耦合问题进行了数值模拟,但以上文献所进行的分析均为板壳结构处于约束状态下的平衡位置附近的振动耦合分析。利用ANSYS静力学分析模块以及CFX或FLUENT等流体分析模块对有固定约束条件的板壳结构进行流-固耦合分析的实例已经很多,ANSYS Workbench中也有这方面的耦合实例。但是对于流体冲击引起结构的大位移以及较大变形的动力学分析目前还不完善,有待进一步的研究。因此本文应用大型通用有限元分析软件ANSYS13.0中的显示动力分析模块LS-DYNA以及流体分析模块FLUENT,对受流体冲击作用下兼有大位移及较大变形的板壳结构的流-固耦合作用进行了仿真分析。
2 有限元分析
2.1 问题描述
本文针对板壳结构受流体冲击载荷作用下的动力学响应进行分析,主要研究板壳结构的运动时间历程、应力分布规律以及对流场分布的影响。
用于仿真对照的试验方案如图1所示,矩形薄板一端固定于转轴上,并全部浸于水箱中,同时在正对薄板中心的水箱壁上设有一个高速水流进口,以保证水流在初始时刻可垂直冲击薄板中心。此外,在水箱中薄板旋转方向上的特定位置处设置有一个平行于转轴中心线的刚性挡杆,旨在对因受流体冲击而发生旋转的薄板起到反向阻碍作用,使其出现较大变形。测量的薄板的转动角度、板面应力分布等参数可作为仿真对比的依据。
基于LS-DYNA及FLUENT的板壳结构流固耦合分析
2.2 计算模型
2.2.1 结构模型
结构模型包括四部分:矩形薄板、转轴、轴承以及刚性挡杆。运用ANSYS程序的参数化建模功能即可快速得到结构模型。利用复杂的实体切割及布尔运算功能将结构模型全部采用sweep方法进行六面体网格划分,所选用的单元类型为显式solid164单元,有限元网格模型如图2所示。此外,由于要接受来自流体域计算的压强载荷,而压强载荷在体单元上进行施加很难保证加载的正确性,因此需要在薄板的表面建立一层虚拟的薄壳单元,此薄壳单元在计算过程中只起到传递压强载荷的作用,不应对薄板结构起到任何的加强作用,所以就需要保证壳单元的厚度值的数量级远远小于薄板的厚度,以尽可能降低计算过程中壳单元对实际计算模型的影响。本文所采用的壳单元为显式shell163单元,厚度实常数设置为1e-6。
矩形薄板与转轴的连接处采用共节点的方式进行处理。转轴与两个轴承之间建立接触,接触类型为Automatic Surface To Surface。由于在转动过程中薄板将与刚性挡杆发生碰撞,因此在薄板的表面壳单元与挡杆之间也需建立接触,类型为Automatic Node To Surface。该有限元模型的单元总数为3434,节点总数为3763。
薄板与转轴的材料均为钢。由于不考虑轴承的应力及变形情况,故轴承及刚性挡杆均采用LS-DYNA中特有的刚性材料模型,并约束所有自由度。
由于在LS-DYNA中压强载荷只能施加于part或component上,因此将前述所划分的耦合界面上的每个壳单元均建立成一个component,每个壳单元上的压强载荷由该单元四个节点的压强值求平均得到,而各个结构节点的压强值则根据其坐标对应关系由流体域的流体节点压强值插值得到。得到每个单元的平均压强后,分别建立载荷数组,通过APDL语言可以方便的进行每个单元的载荷施加。
基于LS-DYNA及FLUENT的板壳结构流固耦合分析
2.2.2 流体域模型
流体域模型采用FLUENT专用前处理器GAMBIT进行建模。水箱长和宽均为900mm,水箱高为500mm,进口管道直径为90mm,进口管道长200mm。由于流体域模型比较复杂,模型最小边长与最大边长数量级相差较大,故采用四面体非结构网格进行划分,划分结果如图3所示。在薄板及水流进口区域附近由于流场变化较大,故网格密度设置较大,在远离薄板的水箱壁处网格密度设置较小,划分后的流体域网格总数为140369。在FLUENT中流场边界条件设置如下:入口边界为速度入口v=5m/s,出口边界为压强出口p=0,水箱壁、转轴、薄板以及进水管壁均为wall边界。另外,薄板的wall边界应单独设置,以便在流体域计算完成后输出此耦合面上的压强数据,进而以外载的形式施加到结构求解器中。
2.3 耦合方法
此流-固耦合问题属于双向耦合问题,故流体与结构之间的信息传递是交互的。由于LS-DYNA与FLUENT之间不能直接进行结果数据的交换,因此需要有中间数据交换步骤。本文利用自编的数据转换程序分别对各自软件计算的结果数据进行处理,转换成能够被各自软件读取的数据格式,从而进行耦合迭代。耦合计算的流程如图4所示,由FLUENT开始,首先进行流场初始化并得到初始压强分布,然后将此压强载荷通过
基于LS-DYNA及FLUENT的板壳结构流固耦合分析
数据处理传递到LS-DYNA,然后进行结构场的第一时间步迭代计算,计算得到的位移数据再通过数据处理传回FLUENT,从而完成一个耦合迭代步。
3 仿真结果分析
3.1 薄板运动时间历程分析
利用ANSYS中的LS-DYNA求解器进行结构显式动力学计算。薄板在水流冲击作用下围绕转轴旋转,在ANSYS时间历程后处理中提取转板质心位移值随时间变化的数据,并进行相应处理后转换为转动角度以及角速度随时间变化的历程曲线,分别如图5和图6所示。同时试验测得的转角及角速度曲线也在图5与图6中给出。
基于LS-DYNA及FLUENT的板壳结构流固耦合分析
通过对比试验与仿真曲线,可以看出采用本文中流-固耦合计算方法模拟薄板的运动学响应基本上符合试验结果。在运动的初始阶段,由于试验水流流速是从零开始上升至稳定流速值,而仿真的初始流速即设置为稳定流速值,故仿真得出的转角曲线略超前于试验值。试验的最大转角略低于仿真最大转角,同时试验的碰撞时间点超前于仿真的碰撞时间点。其共同原因是试验用薄板表面布有测试用的导线,其效果相当于增加了板厚,故其与挡杆碰撞的时间点提前,转角最大值降低。从http://www.77cn.com.cn以上两图的仿真曲线可以看出,整个耦合作用过程持续时间很短,薄板最后趋于稳定的时间约为72ms左右。从图7可以看出,在初始受到流体冲击时,转板角速度迅速提高,这是由于在初始时刻,水流垂直冲击薄板,薄板受到的法向力最大。当角速度达到一定值后趋于稳定,薄板所受流体冲击载荷与水域中阻力以及转轴的摩擦力矩达到平衡。当t≈56ms时,薄板与刚性挡杆碰撞,继而产生一定的回弹,角速度迅速跌落为负值。在流体的持续冲击作用下,薄板角速度振荡的振幅逐渐衰减并趋于零。
3.2 薄板应力分析
利用ANSYS通用后处理可得到转板在碰撞前不同时刻的应力分布图,如图7所示。由于薄板中心区域 …… 此处隐藏:2672字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [实用文档]李践-有效提升销售的12大黄金法则8-大
- [实用文档]党支部换届工作方案
- [实用文档]2013年下期电子商务专业部宣传工作计划
- [实用文档]方庄一矿通风、钻探绩效工资考核管理办
- [实用文档]项目一 认识企业物流认识企业物流
- [实用文档]MBI_Display_产品蓝图规画
- [实用文档]北京市建筑业劳务作业人员普法维权培训
- [实用文档]锅炉燃烧调整与运行优化
- [实用文档]4支付结算业务的核算
- [实用文档]米什金_货币金融学_第9版各章学习指导
- [实用文档]水泥混凝土路面硬化工程施工组织设计
- [实用文档]钢筋工程安全技术交底书
- [实用文档]关于公布华中师范大学本科毕业论文
- [实用文档]太原市园林绿化施工合同范本 2
- [实用文档]周日辅导 初中英语分类复习单项选择题(
- [实用文档]第四章 文化经纪人的管理形式 第二节
- [实用文档]学宪法讲宪法竞赛题库
- [实用文档]《数值计算方法》期末考试模拟试题二
- [实用文档]爱词霸学英语:每日一句( 十月)
- [实用文档]2014年国家公务员面试:无领导小组讨论
- 新课程主要理念和教学案例分析汇编(24
- 英国人的快乐源于幸福的家庭生活
- 七年级上册第一次月考模拟数学试卷
- 真丝及仿真丝的种类有哪些?
- 【最新】华师大版八年级数学下册第十六
- 高中英语3500个必背单词
- 我可以接受失败,但我不能接受放弃!
- 最近更新沪科版八年级物理上册期末试卷
- 绿化工作先进乡镇事迹材料
- 鲁教版九年级上册思想品德教学计划
- 英语音标的分类
- 地下室底板无梁楼盖与普通梁板结构形式
- 美容师黄金销售话术
- 雅思写作满分作文备考方法
- 血清甲状腺激素测定与高频彩色多普勒超
- 1度浅析装修对室内空气品质的影响
- 2017-2022年中国汞矿行业深度分析与投
- 计算机二级VB公共基础知识
- (何勇)秸秆禁烧_重在寻找出路
- 内外墙抹灰工程分包施工合同1