教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 资格考试 >

2017年上海市中考数学试卷(4)

来源:网络收集 时间:2025-11-15
导读: 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义. 16.平行线

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

16.平行线的性质 1、平行线性质定理

定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.

定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.

定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.

2、两条平行线之间的距离处处相等.

17.平行四边形的性质

(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形. (2)平行四边形的性质: ①边:平行四边形的对边相等. ②角:平行四边形的对角相等.

③对角线:平行四边形的对角线互相平分.

第33页(共39页)

(3)平行线间的距离处处相等. (4)平行四边形的面积:

①平行四边形的面积等于它的底和这个底上的高的积. ②同底(等底)同高(等高)的平行四边形面积相等.

18.菱形的判定与性质

(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.

(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.) (3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.

(4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.

19.矩形的判定 (1)矩形的判定:

①矩形的定义:有一个角是直角的平行四边形是矩形; ②有三个角是直角的四边形是矩形;

③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”) (2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.

②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.

20.正方形的判定 正方形的判定方法:

①先判定四边形是矩形,再判定这个矩形有一组邻边相等;

第34页(共39页)

②先判定四边形是菱形,再判定这个菱形有一个角为直角. ③还可以先判定四边形是平行四边形,再用1或2进行判定.

21.*平面向量 平面向量.

22.点与圆的位置关系

(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:

①点P在圆外?d>r ②点P在圆上?d=r ①点P在圆内?d<r

(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.

(3)符号“?”读作“等价于”,它表示从符号“?”的左端可以得到右端,从右端也可以得到左端.

23.圆与圆的位置关系

(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含. 如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.

(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离?d>R+r;

②两圆外切?d=R+r;

③两圆相交?R﹣r<d<R+r(R≥r); ④两圆内切?d=R﹣r(R>r); ⑤两圆内含?d<R﹣r(R>r).

第35页(共39页)

24.正多边形和圆 (1)正多边形与圆的关系

把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆. (2)正多边形的有关概念

①中心:正多边形的外接圆的圆心叫做正多边形的中心. ②正多边形的半径:外接圆的半径叫做正多边形的半径.

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角. ④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.

25.圆的综合题 圆的综合题.

26.轴对称图形

(1)轴对称图形的概念:

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.

(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条. (3)常见的轴对称图形:

等腰三角形,矩形,正方形,等腰梯形,圆等等.

27.旋转的性质 (1)旋转的性质:

①对应点到旋转中心的距离相等. ②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等. (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度. 注意:三要素中只要任

第36页(共39页)

意改变一个,图形就会不一样.

28.中心对称图形 (1)定义

把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.

注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.

(2)常见的中心对称图形

平行四边形、圆形、正方形、长方形等等.

29.解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问.

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度. (2)解直角三角形的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

30.扇形统计图

(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.

(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.

第37页(共39页)

(3)制作扇形图的步骤

①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内 …… 此处隐藏:2299字,全部文档内容请下载后查看。喜欢就下载吧 ……

2017年上海市中考数学试卷(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/656652.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)