钢轨探伤1章理论 - 图文(4)
实际探伤中,有时近场区分布于两种不同的介质中,这时近场区长度计算与均匀单一介质不同,如图1-8所示,超声波先通过介质Ⅰ,然后进入介质Ⅱ,设介质Ⅰ的厚度为L,则介质Ⅱ的剩余近场区N为:
C1D2N?N2?L??L ?
C24?2式中:N2——近场区全部在介质Ⅱ中的近场区长度;
λ2——介质Ⅱ中的波长;
C1、C2——介质Ⅰ、Ⅱ中的波速。
图1-8 近场区在两种介质中的分布图
由于近场区存在声压极大极小值,处于声压极大值处的较小缺陷可能回波较高,而处于声压极小值处的较大缺陷可能回波较低,这样就可能引起误判,所以超声探伤中总是尽量避开这一区域。
至波源的距离大于近场区长度(x>N)的区域称为远场区。在远场区中,轴线上的声压随距离增加而单调减少,在距离x>3N时,圆盘源声束轴线上的声压与球面波的声压相差已甚小,如图1-7中虚线所示。
以上讨论的是波源轴线上的声压分布情况,对超声场中不同截面上的声压来说,其分布规律如图1-9所示,在Χ=0.5N的截面中心声压为0,中心附近的声压较高,而X≥N的各截面中心声压最高,偏离中心的声压逐渐降低。
- 16 -
图1-9 超声场纵截面声压分布
2.波束指向性与半扩散角(θ0)
日常使用灯泡照明时,灯泡的光亮总是朝各个方向发散,而手电筒却能射出一束范围狭窄亮度较强的光。高频超声与低频可听声相比,就好比手电筒与灯泡一样,前者容易形成窄小的声束。以圆形平板振动声源为例,只要平板直径(D)与声波波长(λ)符合合适的比例(比如说,平板直径为7.5mm,而声波频率为100万赫),就能得到如图1-10所示的窄小的波束,像这种探头发出的超声波能量集中在一定区域并向一个方向辐射的现象称为波束指向性。晶片发出的超声波束如手电筒发出的光柱类似,在靠近晶片较短的范围看作是笔直传播,经过一段距离后,按一定角度扩展辐射,非扩散的区域为近场长度(N)的1.67倍,大于1.67 N为扩散区,其优劣常用半扩散角(θ0)表示。半扩散角是指超声波定向辐射的锥角之半,即波束轴线与边缘之间的夹角,又称指向角。超声波的能量主要集中在2θ0以内的锥形区域内,此区域称为主声束,主声束边缘声压为零。
图1-10 超声场主声束和副声束
主声束旁侧的波束为副声束,副声束能量低,传播距离小。对圆盘声源辐射的纵波声场,其声束半扩散角计算式如下:
- 17 -
?0?arcsin1.22上式可知,半扩散角θ0与
?D?70?D
?比值有关,相同条件下,若晶片直径(D)愈大或波D长(λ)愈短,则半扩散角(θ0 )就愈小,波束指向性就愈好,超声波能量集中,探伤灵敏度高,分辨率好,定位精确,不过近场长度(N)也将愈大。
边长为a的方晶片声束半扩散角计算式:
?0?arcsin1.08?a?57?a
需要指出的是,上述分析主要建立在圆盘声源辐射的纵波声场基础上,对于横波发射声场(常用的超声波横波由斜探头得到),其近场区长度和半扩散角计算相对更复杂一些,可以参考相关书籍。
3.超声场的特征值
描述超声场的特征值主要有声压、声强和声阻抗。
(1)声压 超声场中某一点某一瞬时所具有的压强(P1)与该点没有超声波存在时的静态压强(P0)之差称为该点的声压(P)。单位为帕斯卡(Pa,1Pa=1 N/m2)。在超声场内,各点的声压并不一样,通常某一点的声压是一个随时间按正弦函数周期变化的量,其幅值与介质密度、声速和频率成正比。由于超声波的频率很高,远大于
声波的频率,故超声波的声压也远大于声波的声压。
(2)声阻抗 介质中某一点的声压与该点的振动速度之比称为声阻抗(Z)。单位为kg/(m2·s),数值上声阻抗等于介质密度(ρ)与声速(C)的乘积,即Z?P???C,
V它表示超声场中介质对质点振动的阻碍作用。由于固体、液体和气体三者的波速和密度相差很大,因此,它们的声阻抗大不相同,即使在同一固体介质中,由于纵波、横波和表面波的声速(C)不同,因此它们的声阻抗也不一样。
(3)声强 单位时间内,垂直通过单位面积的声能量称为声强(I)。常用单位
- 18 -
为erg/(cm2·s)或W/cm2 。对于平面余弦波,其平均声强(I)为:
11P2222I??CAW?ZV?
222Z由于声强的变化范围非常大,数量级可以相差很多,如人耳可闻的最弱声强(称为标准声强)为I0=10-16W/cm2,而人耳可忍受的声强达10-4W/cm2。两者相差1012倍,显然不便于比较和计算。因此常用两个声波声强之比的常用对数值来表示两者的关系,称为声强级(IL)。单位为贝尔(BeL),即IL=lgI/I0。在实用上,贝尔这个单位太大,因而常取其1/10,单位为分贝(dB)。即IL=10lgI/I0。由于声强与声压的平方成正比,所以有IL=10lg(I/I0)=20 lg(P1/P2 )(dB)。对于放大线性良好的超声波探伤仪,示波屏上波高与声压成正比,即任意两波高之比H1/H2等于相应的声压之比P1/P2,两者的分贝差为:
??20lgPH1?20lg1 P2H2(五)超声波的传播特性 1.波的散射
超声波在介质中传播时遇到小于波长的障碍物或其它不连续性,而使超声波向各个不同方向产生无规律反射、折射或衍射的现象称为散射。散射的结果使声能分散、穿透力降低和引起不规则的草状杂波,导致信噪比及灵敏度下降。
散射现象的强弱取决于材料内部组织、入射波波长和异质界面的平整度。当被检工件为铸件或奥凡体焊缝;探测面或反射面不平整;工件内存在与波长相当的气孔和夹杂,散射现象尤为严重。钢轨探伤中遇有轨面擦伤,轨底(轨颚)锈蚀,以及铝热焊焊缝的晶粒粗大等引起灵敏度下降、杂波增多就是散射现象的反射。
2.波的绕射
- 19 -
超声波在传播过程中经过障碍物边缘或小孔时,所产生的展衍现象称为绕射(图1-11)。绕射现象取决于障碍物尺寸(D)和波长(λ)之比。当D<<λ时,声波只有绕射;当D≈λ时,有绕射和反射,且产生阴影区;当D>λ时,阴影区较大。
图1-11 绕射现象示意图
由于超声波具有绕射现象,一方面利用绕过障碍物或小孔的阴影减小或扩展进行探伤,另一方面也限制了脉冲反射法对最小缺陷的检测能力,因为缺陷的尺寸小于1/2波长时,绕射占主导地位。所以探测工件晶粒较细、表面光洁、材料衰减小时,应采用较高的频率来提高小缺陷的检测率。
3.波的叠加
当几列波在同一介质中传播并相遇时,相遇处质点的振动是各列波引起的分振动的合成,任一时刻该质点的位移是各列波引起的分位移的矢量和。相遇后的各列波仍保持它们原来的特性(频率、波长、振动方向等)不变,并按照各自原来的传播方向继续前进,好像在各自的传播过程中没有遇到其它波一样,称为波的叠加原理。
4.波的干涉
两列频率和振动方向相同、相位差恒定的波相遇时,由于波的叠加作用,使某些地方振动始终互相加强,而另一些地方振动始终互相减弱或完全抵消,这种现象称为波的干涉。能产生干涉现象的波称为相干波。相干波的波源称为相干波源。两列振幅相同的相干波,在同一直线上沿相反方向传播时互相叠加而成的波称为驻波。
- 20 -
…… 此处隐藏:1161字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [法律文档]苏教版七年级语文下册第五单元教学设计
- [法律文档]向市委巡视组进点汇报材料
- [法律文档]绵阳市2018年高三物理上学期第二次月考
- [法律文档]浅析如何解决当代中国“新三座大山”的
- [法律文档]延安北过境线大桥工程防洪评价报告 -
- [法律文档]激活生成元素让数学课堂充满生机
- [法律文档]2014年春学期九年级5月教学质量检测语
- [法律文档]放射科标准及各项计1
- [法律文档]2012年广州化学中考试题和答案(原版)
- [法律文档]地球物理勘查规范
- [法律文档]《12系列建筑标准设计图集》目录
- [法律文档]2018年宁波市专技人员继续教育公需课-
- [法律文档]工会委员会工作职责
- [法律文档]2014新版外研社九年级英语上册课文(完
- [法律文档]《阅微草堂笔记》部分篇目赏析
- [法律文档]尔雅军事理论2018课后答案(南开版)
- [法律文档]储竣-13827 黑娃山沟大开挖穿越说明书
- [法律文档]《产品设计》教学大纲及课程简介
- [法律文档]电动吊篮专项施工方案 - 图文
- [法律文档]实木地板和复合地板的比较
- 探析如何提高电力系统中PLC的可靠性
- 用Excel函数快速实现体能测试成绩统计
- 教师招聘考试重点分析:班主任工作常识
- 高三历史选修一《历史上重大改革回眸》
- 2013年中山市部分职位(工种)人力资源视
- 2015年中国水溶性蛋白市场年度调研报告
- 原地踏步走与立定教学设计
- 何家弘法律英语课件_第十二课
- 海信冰箱经销商大会——齐俊强副总经理
- 犯罪心理学讲座
- 初中英语作文病句和错句修改范例
- 虚拟化群集部署计划及操作流程
- 焊接板式塔顶冷凝器设计
- 浅析语文教学中
- 结构力学——6位移法
- 天正建筑CAD制图技巧
- 中华人民共和国财政部令第57号——注册
- 赢在企业文化展厅设计的起跑线上
- 2013版物理一轮精品复习学案:实验6
- 直隶总督署简介




