数学物理方法 保角变换法
第十一章 求解定解问题的其它解法求解数理方程,除了行波法、分离变量法 外,还有其他的常用解法: 格林函数法; 积分变换法; 保角变换法等一些解析法。
11.1 保角变换法求解定解问题在许多物理问题中(如电学、热学、光学、流体力学和弹 性力学等)经常会遇到解平面场的拉普拉斯方程或泊松方程 的问题.尽管可用前几章的理论方法如:分离变量法或格林 函数法等来解决,但当边值问题中的边界形状变得十分复杂 时,分离变量法和格林函数法却显得十分困难,甚至不能解 决.对于复杂的边界形状,拉普拉斯方程定解问题常采用保
角变换法求解.
保角变换法解定解问题的基本思想:通过解析函数的变换或映射(这部分知识在复变函数论中 已经学习过)将 Z平面上具有复杂边界形状的边值问题变换为 W平面上具有简单形状(通常是圆、上半平面或带形域)的
边值问题,而后一问题的解易于求得.于是再通过逆变换就求得了原始定解问题的解. 这就是本章将要介绍的一种解决数学物理方程定解 问题中的解析法――保角变换法。
保角变换法是解决这类复杂边界的最有效方法,特别适合于分析平面场的问题。 例如静电场的问题,由于这种求解复杂边界的定解问 题具有较大的实用价值,所以有必要单独以一章的内 容进行介绍.
复变函数论中已经系统介绍了保角变换理论, 本章主要介绍利用保角变换法求解定解问题。
11.1.1 保角变换与拉普拉斯方程边值问题的关系在复变函数论中我们已经知道,由解析函数 实现的从Z平面到W 平面的变换在 的点具有保
角性质,因此这种变换称为保角变换.下面我们主要讨论一一对应的保角变换,即假定 和它的反函数都是单值
函数;或者如果它们之中有多值函数就规定取它的黎曼面的一 叶.
定理11.1.1
如果将由
到 的变换由
的保角变换看成为二元(实变)函数 的变量代换,则
到
平面上的边界变成了满足拉普拉斯方 也满足拉普拉斯方程.
平面上的边界.我们能证明,如果 程,则经过保角变换后得到的
【证明】 利用复合函数求导法则有
(11.1.1)
同理
(11.1.2)
两式相加得到
(11.1.3)
利用解析函数
的C-R条件
(11.1.4)
以及解析函数的实部和虚部分别满足拉普拉斯方程的性质
(11.1.5)
将式(11.1.4)和式(11.1.5)代入到式(11.1.3)化简后得到
注意到上式已经使用了:
对于保角变换满足拉普拉斯方程,则
因而只要 )也满足拉
普拉斯方程,即为
(11.1.6)
这样我们就有结论:如果在
平面上给定了
的拉普拉斯方程边值问题,则利用保角变换 ,可以将它转化为 的拉普拉
斯方程边值问题. 平面上
同理可以证明,在单叶解析函数变换下,泊松方程
(11.1.7)
仍然满足泊松方程
(11.1.8)
由上式可知,在保角变换下,泊松方程中的电荷密度 发生了变化. 对于波动问题和输运问题,同理可以证明,亥姆霍兹方程
(11.1.9) 经变换后仍然服从亥姆霍兹方程 (11.1.10)
注意到方程要比原先复杂,且 能不是常系数.
前的系数可
保角变换法的优点不仅在于拉普拉斯方程、泊松方程等方程的类型在保角变换下保持不变,更重要的是,能将
复杂边界问题变为简单边界问题,从而使问题得到解决.
下面,在介绍用保角变换法来求解拉普拉斯方程之前, 先介绍常用到的一些保角变换.
11.1.2 常用的几种保角变换(1) 平移变换
将z平面上的图形整体平移一个矢量a。
(2) 线性变换 伸缩 旋转
平移
相关推荐:
- [法律文档]苏教版七年级语文下册第五单元教学设计
- [法律文档]向市委巡视组进点汇报材料
- [法律文档]绵阳市2018年高三物理上学期第二次月考
- [法律文档]浅析如何解决当代中国“新三座大山”的
- [法律文档]延安北过境线大桥工程防洪评价报告 -
- [法律文档]激活生成元素让数学课堂充满生机
- [法律文档]2014年春学期九年级5月教学质量检测语
- [法律文档]放射科标准及各项计1
- [法律文档]2012年广州化学中考试题和答案(原版)
- [法律文档]地球物理勘查规范
- [法律文档]《12系列建筑标准设计图集》目录
- [法律文档]2018年宁波市专技人员继续教育公需课-
- [法律文档]工会委员会工作职责
- [法律文档]2014新版外研社九年级英语上册课文(完
- [法律文档]《阅微草堂笔记》部分篇目赏析
- [法律文档]尔雅军事理论2018课后答案(南开版)
- [法律文档]储竣-13827 黑娃山沟大开挖穿越说明书
- [法律文档]《产品设计》教学大纲及课程简介
- [法律文档]电动吊篮专项施工方案 - 图文
- [法律文档]实木地板和复合地板的比较
- 探析如何提高电力系统中PLC的可靠性
- 用Excel函数快速实现体能测试成绩统计
- 教师招聘考试重点分析:班主任工作常识
- 高三历史选修一《历史上重大改革回眸》
- 2013年中山市部分职位(工种)人力资源视
- 2015年中国水溶性蛋白市场年度调研报告
- 原地踏步走与立定教学设计
- 何家弘法律英语课件_第十二课
- 海信冰箱经销商大会——齐俊强副总经理
- 犯罪心理学讲座
- 初中英语作文病句和错句修改范例
- 虚拟化群集部署计划及操作流程
- 焊接板式塔顶冷凝器设计
- 浅析语文教学中
- 结构力学——6位移法
- 天正建筑CAD制图技巧
- 中华人民共和国财政部令第57号——注册
- 赢在企业文化展厅设计的起跑线上
- 2013版物理一轮精品复习学案:实验6
- 直隶总督署简介




