教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 文库大全 > 资格考试 >

高中数学轻松搞定排列组合难题二十一种方法(教师版)

来源:网络收集 时间:2026-01-20
导读: 高考数学轻松搞定排列组合难题二十一种方法 (教师版) 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处

高考数学轻松搞定排列组合难题二十一种方法 (教师版)

排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标

1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固

1.分类计数原理(加法原理)

完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法, ,在第n类办法中有mn种不同的方法,那么完成这件事共有:

种不同的方法.

2.分步计数原理(乘法原理)

完成一件事,需要分成n个步骤,做第1步有m

1种不同的方法,做第2步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有:

种不同的方法.

3.分类计数原理分步计数原理区别

分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有C3 然后排首位共有C4 最后排其它位置共有

3 A411

由分步计数原理得C4C3A4

113

288

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略

例2. 7人站成一排 ,

其中甲乙相邻且丙丁相邻,

共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻

元素内部进行自排。由分步计数原理可得共有

52

2A5A2A2 480种不同的排法

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有

A55种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共

1

有种

454

不同的方法,由分步计数原理,节目的不同顺序共有A5A6 种 A6

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元

素之间的全排列数,则共有不同排法种数是:

3 A77/A3

4

4

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有A7种方法,其余的三个位置甲乙丙共有 1种坐法,则共有A7种方法。

思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? C10

五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有7种不同的排法

允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素

n

的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为m种

练习题:

1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同

插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法7 六.环排问题线排策略

例6. 8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人

(8-1)!种排法即7!

8

6

5

A44并从此位置把圆形展成直线其余

7人共有

EABCDEFGHA

一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆 1m 形排列共有An

n

练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略

例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法

解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有A4种,再排后4个位置上的特殊元素丙有

5215

A14种,其余的5人在5个位置上任意排列有A5种,则共有A4A4A5种

2

2

一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右

相邻,那么不同排法的种数是 346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有C5种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有A4种方法,根据分步计数原理装球的方法共有C5A4

练习题:一个班有6名战士,

其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1

人参加,则不同的选法有 192 种

九.小集团问题先整体后局部策略

例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?

解:把1,5,2,4当作一个小集团与3排队共有

22

A2A22A2种排法.

22

A22种排法,再排小集团内部共有A2A2种排法,由分步计数原理共有2

42

4

前 排后 排

练习题:

1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为

54

A2A25A4

55

A22A5A5种

2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有

十.元素相同问题隔板策略

例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方 …… 此处隐藏:2950字,全部文档内容请下载后查看。喜欢就下载吧 ……

高中数学轻松搞定排列组合难题二十一种方法(教师版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wenku/97185.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)