教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 文库大全 > 实用文档 >

人教版七年级数学(下册)第八章_二元一次方程组教案

来源:网络收集 时间:2026-02-08
导读: 第八章 二元一次方程组 教材内容 本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程 组解法举例,二元一次方程组的应用。 教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算

第八章 二元一次方程组

教材内容

本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程

组解法举例,二元一次方程组的应用。

教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程(组)的解。接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。

教学目标

〔知识与技能〕

1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二(三)元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。

〔过程与方法〕

1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。

〔情感、态度与价值观〕 通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。

重点难点

二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题是重点;以方程组为工具分析问题、解决含有多个未知数的问题是难点。

课时分配

8.1二元一次方程组 1课时 8.2 消元——二元一次方程组的解法 4课时 8.3再探实际问题与二元一次方程组 3课时 *8.4三元一次方程组解法举例 2课时 本章小结 2课时

8.1二元一次方程组

[教学目标]理解二元一次方程、二元一次方程组及它们解的概念,会检验一对数是不是二元一次方程组的解。 [重点难点] 二元一次方程、二元一次方程组及其解的含义是重点;理解二元一次方程组的解是难点。 [教学过程] 一、问题导入

我们很多同学喜欢打篮球,这里面也有学问。看下面的问题:[投影1]

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

你知道吗?

二、二元一次方程和二元一次方程组

这个问题中包含了哪些必须同时满足的条件? 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分.

若设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

x+y=22

2x+y=40

这两个方程与一元一次方程有什么不同?它们有什么特点?

所含未知数的个数不同;特点是:(1)含有两个未知数,(2)含有未知数的项的次数是1。 像这样含有两个未知数,并且含有未知数的项的次数是1的方程叫做二元一次方程。

上面的问题包含了两个必须同时满足的条件,也就是未知数x、y必须同时满足方程x+y=22和2x+y=40 把两个方程合在一起,写成

x+y=22 ① 2x+y=40 ②

像这样,把具有两个未知数且含未知数的项的次数是1的两个方程合在一起,就组成了二元一次方程组. 三、二元一次方程、二元一次方程组的解

探究:[投影2]满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中. 为此我们用含x的式子表示y,即y=22-x(x可取一些自然数)。

显然,上表中每一对x、y的值都是方程①的解。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 如果不考虑方程的实际意义,那么x、y还可以取哪些值?这些值是有限的吗? 还可以取x=-1,y=23;x=0.5,y=21.5,等等。 所以,二元一次方程的解有无数对。 上表中哪对x、y的值还满足方程②?

x 18,

x=18,y=2还满足方程②.也就是说,它们是方程①与方程②的公共解,记作

y 4.

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 四、例题

例1 若方程x2 m –1 + 5y 2–3n = 7是二元一次方程.求m2+n的值。 分析:由二元一次方程的概念你可以知道什么?

解:依题意,得 2 m –1=1,2–3n =1. 由2 m –1=1,得 m =1 由2–3n =1得n =1/3 ∴m2+n=1+1/3=4/3.

五、课堂练习[投影3]

1、下列各对数值中是二元一次方程x+2y=2的解的是〔 〕

x 2 x 2 x 0 x 1A B C D

y 0y 0y 2y 1

2、课本94面练习。

六、课堂小结

1、二元一次方程、二元一次方程组的概念; 2、二元一次方程、二元一次方程组的解. 七、作业:课本95面1-4.

八、教学反思

在教学中引导学生对知识进行迁移与类比,让学生用原有的利用一元一次方程进行认知结构去童话新的知识,符合建构主义理念。通过探究活动得出结论:

1.二元一次方程组的解是成对出现的;

2.二元一次方程组的解有无数多个,这与一元一次方程有着显著的区别。

通过对比,让学生体验到从算术方法到代数方法是一种进步。而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担。

8.2消元(一)

[教学目标]1、掌握代入法解二元一次方程组;2、经历探索二元一次方程组的解法的过程,初步体会“消元” 的基本思想.

[重点难点] 代入消元法解二元一次方程组是重点;理解“消元”的基本思想是难点。 [教学过程] 一、情景导入

下面是我们讨论过的一个关于篮球比赛的问题:[投影1]

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

请你求出结果。

设这个队胜了x场,依题意,得 2x+(22-x)=40 解得 x=18 22-x=4

所以,这个队胜了18场,负了4场.

我们知道,设胜的场数是x,负的场数是y,可列方程组: x+y=22 2x+y=40 那么怎样求这个方程组的解呢? 二、代入消元法

上面的二元一次方程组和一元一次方程有什么关系?

可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。

这就是说,二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程。这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.

例1 解方程组:

x y 3

3x 8y 14

分析:根据消元的思想,解方程组要把两个未知数转化为一个未知数,为此,需要用一个未知数表示另一个未知数。怎样表示呢?转化成的一元一次方程是什么?

解:由①得x=y+3③

把③代入②,得 3(y+3)-8y=14 解得y= …… 此处隐藏:12793字,全部文档内容请下载后查看。喜欢就下载吧 ……

人教版七年级数学(下册)第八章_二元一次方程组教案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wenku/1111988.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)