(Parallel Algorithms and Scalability)(2)
r
3
i
eY r
3
i
eY+1
i
y+1+1i n
r
3
i
i
y+1i n
e r Y2
i
+1
y+1?1i n i
eY1+1 ri
:::
x?1i
x
i
x+1
:::
-
x
Figure 1: Graphical presentation of the internal approximations for the solution y, and the 3-stage Runge-Kutta discretization.n
System (8) can be written in tensor notation as
Parallel de nition
Y= e y?1+ h(A M )Y;n
(11)
Parallel Numerics 95/Sorrento, Italy/September 27-29, 1995
methods
Parallelisation of Runge-Kutta methods T
PACT
where Y= Y1; Y2;:::Y], the s-dimensional vector e has unit entries and is the tensor product (in general A B= a B]). If the eigenvalues of A are all real and distinct and T is the matrix of the eigenvectors of A, then the D= T?1 AT is a diagonal matrix with the eigenvalues on the diagonal. By introducing transforming vectors~ Y= T?1 Y; (12) equation (11) is transformed to~~ Y= T?1 e y?1+ h(D M )Y; which is a set of s subsystems with d equations and d unknowns in each subsystem. These subsystems are of the form~ X~ Y= (T?1 ) y?1+ h M Y; i= 1; 2;:::; s (13)ij i i n s i
or
j
=1i
ij
n
i
i
~
X (I? h M )Y= (T?1 ) y?1; i= 1; 2;:::s:s d i j
where the right part of system (14) equals to the sum of products of the i-th row from T?1 and the previous solution vector y?1 .n
=1
ij
n
(14)
The third-order 3-stage Runge-Kutta method, introduced in 5] was used in our implementation to solve the heat transfer equation. This method is de ned by the following Bucher tableau: 0:17731047291815 0:20318569149365?0:02891149910657 0:00303628053107 1:00000000000000 0:57206641687972 0:44394830854688?0:01601472542660 2:83374670845340 0:10181357682466 2:04204807121208 0:68988506041666?0:01601472542660 0:44394830854688 0:57206641687972 Eigenvalues of matrix A are 1; 2; 3]= 0:535870000; 0:46527906045718; 0:335870000]: The corresponding matrix of eigenvector of A is 2 3?0:99698590138860?0:99359718232641 0:98300104580292 7 T= 6 0:07597739963378 0:11046776579844?0:17342135765532 5 4?0:01570182082594?0:02369624427039 0:06028247389871 and it's inverse is given by 2 3?3:347643243690?48:055650853970?83:658467850145 7 T?1= 6 2:438127219799 58:641197577395 128:942194784559 5 4 0:086432480687 10:533989095837 45:483459690559Parallel Numerics 95/Sorrento, Italy/September 27-29, 1995
Implementation details
methods
Conclusion
PACT
3 Parallel algorithmThe parallel 3-stage Runge-Kutta algorithm can be now represented as:set-up loop loop end for each time step for i= 1; 2; 3 Runge-Kutta stages M= I? (h M ); (* left part of Equ. (14) *) P (* right part of Equ. (14) *) Right= 3=1 (T?1 ) y;~= M?1 Right; Y (* the solution of system *)i d i j i;j old i i
y= y0;old
(*set d initial values*)
end
P Di erence= 3=1 b MY; y= y+ Di erence; y=y;i i i new old old new i d
~ Y= TY;
(* Equ. (12) *) (* di erence from the previous time step *) (* new value in time *) (* save the calculated value *)i i
It is obvious that the calculation of M= I? (h M ), and the multiplication b M can be performed outside of loops because all values are known, therefore, it can be put in the set-up segment. If the amount of work associated with the solution of system (11) for s= 3 is proportional to (3d)3, the amount of work for the solution of the above algorithm is proportional to 3d3 . The solution of d dimensional systems is the most complex operation, however, with the described parallelisation, each subsystem can be solved on a separate processor or on a separate set of processors.
4 ConclusionThe above principle o ers a straightforward possibility for the parallelisation of s-stage RungeKutta methods. We can simply take s processors and solve s systems in parallel. But there are two problems, rst, the dimension of the original system d may by too complex to be performed on a single processor, second, the number of stages can not be arbitrary increased. It follows, that the above parallelisation o ers a good choice for smaller problem domains on parallel processors with relative low number of processors. The parallel algorithm needs almost
no communication, therefore, also message passing systems implemented with PVM can be used. On this way, the described parallel s-stage Runge-Kutta method becomes competitive with other nite-di erences based numerical methods 6]. Further parallelisation of the solution of a d-dimensional system of linear equations, which is usually sparse, remains the problem to be solved in parallel.
Parallel Numerics 95/Sorrento, Italy/September 27-29, 1995
methods
REFERENCES
PACT
References1] R. Trobec, B. Slivnik, Parallel heat transfer computation on generally shaped bodies, Int. Workshop Parallel Numerics'94, Smolenice, Sept. 1994, 157{168. 2] D. Janezic, R. Trobec, Parallelization of an implicit Runge-Kutta method for molecular dynamics integration, J. Chem. Inf. Comput. Sci. 34(1994), 641{646). 3] K. Burrage, A special family of Runge-Kutta methods for solving sti di erential equations, BIT 18(1978), 22{41. 4] J. C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT 16(1976), 237{240. 5] B. Orel, Parallel Runge-Kutta methods with real eigenvalues, Appl. Num. Math. 11(1993), 241{250. 6] B. Slivnik, R. Trobec, Comparison of FD methods for solving the di usion equation, Int. Workshop Parallel Numerics'95, Sorrento, Sept. 1995.
Parallel Numerics 95/Sorrento, Italy/September 27-29, 1995
…… 此处隐藏:3273字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [资格考试]石油钻采专业设备项目可行性研究报告编
- [资格考试]2012-2013学年度第二学期麻风病防治知
- [资格考试]道路勘测设计 绪论
- [资格考试]控烟戒烟知识培训资料
- [资格考试]建设工程安全生产管理(三类人员安全员
- [资格考试]photoshop制作茶叶包装盒步骤平面效果
- [资格考试]授课进度计划表封面(09-10下施工)
- [资格考试]麦肯锡卓越工作方法读后感
- [资格考试]2007年广西区农村信用社招聘考试试题
- [资格考试]软件实施工程师笔试题
- [资格考试]2014年初三数学复习专练第一章 数与式(
- [资格考试]中国糯玉米汁饮料市场发展概况及投资战
- [资格考试]塑钢门窗安装((专项方案)15)
- [资格考试]初中数学答题卡模板2
- [资格考试]2015-2020年中国效率手册行业市场调查
- [资格考试]华北电力大学学习实践活动领导小组办公
- [资格考试]溃疡性结肠炎研究的新进展
- [资格考试]人教版高中语文1—5册(必修)背诵篇目名
- [资格考试]ISO9001-2018质量管理体系最新版标准
- [资格考试]论文之希尔顿酒店集团进入中国的战略研
- 全国中小学生转学申请表
- 《奇迹暖暖》17-支2文学少女小满(9)公
- 2019-2020学年八年级地理下册 第六章
- 2005年高考试题——英语(天津卷)
- 无纺布耐磨测试方法及标准
- 建筑工程施工劳动力安排计划
- (目录)中国中央空调行业市场深度调研分
- 中国期货价格期限结构模型实证分析
- AutoCAD 2016基础教程第2章 AutoCAD基
- 2014-2015学年西城初三期末数学试题及
- 机械加工工艺基础(完整版)
- 归因理论在管理中的应用[1]0
- 突破瓶颈 实现医院可持续发展
- 2014年南京师范大学商学院决策学招生目
- 现浇箱梁支架预压报告
- Excel_2010函数图表入门与实战
- 人教版新课标初中数学 13.1 轴对称 (
- Visual Basic 6.0程序设计教程电子教案
- 2010北京助理工程师考试复习《建筑施工
- 国外5大医疗互联网模式分析




