教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 高等教育 >

主成分分析操作步骤(2)

来源:网络收集 时间:2026-01-14
导读: 元件評分共變異數矩陣 元件 1 2 1 1.000 .000 2 .000 1.000 擷取方法:主體元件分析。 元件評分。 6)因子得分 在之前的“得分”对话框中,由于选中了“保存为变量”,方法中的“回归”;又选 中了“显示因子得分系

元件評分共變異數矩陣 元件 1 2 1 1.000 .000 2 .000 1.000 擷取方法:主體元件分析。 元件評分。

6)因子得分

在之前的“得分”对话框中,由于选中了“保存为变量”,方法中的“回归”;又选

中了“显示因子得分系数矩阵”,因此SPSS的输出结果和原始数据一起显示在数据窗口里:

7)主成分得分 特别提醒:

后两列的数据是北京等16个地区的因子1和因子2的得分,不是主成分1和主成分2的得分。主成分的得分是相应的因子得分乘以相应的方差的算数平方根。 即:主成分1得分=因子1得分乘以3.568的算数平方根 主成分2得分=因子2得分乘以1.288的算数平方根 得出各地区主成分1和主成分2的得分如下表:

后两列就是16个地区主成分1和主成分2的得分。(有兴趣的同学可以验证一下:上面推导出来的主成分的函数关系式计算出来的主成分得分是否与该数据栏的的得分一致)

8)综合得分及排序:

每个地区的综合得分是按照下列公式计算的:

Y=0.73476*主成分1得分+0.26524*主成分2得分 按照此公式计算出各地区的综合得分Y为:

按照综合得分Y的大小进行16个地区的排序: 点击【数据】——【排序个案】

特别提醒:

1.若主成分分析中有n个变量,则特征值(或方差)之和就等于n;

2.特征向量(或主成分的系数)中各个数值的平方和等于1,否则就不是特征向量,也不是主成分系数;

3.主成分载荷向量各系数的平方和等于其对应的主成分的方差; 本例中0.925+ 0.902+ 0.880+ 0.878+ 0.588+ 0.093= 3.568

4.SPSS没有专门的主成分分析模块,是在因子分析模块进行的。它只输出主成分载荷矩阵和因子得分值,而我们最想得到的主成分的系数(特征向量)和主成分则需要另外计算。 5.若计算没有错误,因子1、因子2、主成分1、主成分2和综合得分Y,它们各自的数值之和都等于0;

6.主成分分析应该计算出综合得分并排序。 7.

2

2

2

2

2

2

主成分分析操作步骤(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/616444.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)