教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 作文大全 > 高中作文 >

高二数学必修五(2)

来源:网络收集 时间:2026-01-24
导读: 2 3 n?1 n ?1? ??3n?2??? ?2? n n?1 n ?1??1??1??1??1? Sn?5???7???9???…+?3n?1?????3n?2???2?2??2??2??2??2? 1 2 3 n n?1 ?1??1??1??1??1?两式相减得:Sn?5???2???2???????2????3n?2??? 2?2??2??2??2??2? ,以下

2

3

n?1

n

?1?

??3n?2???

?2?

n

n?1

n

?1??1??1??1??1?

Sn?5???7???9???…+?3n?1?????3n?2???2?2??2??2??2??2?

1

2

3

n

n?1

?1??1??1??1??1?两式相减得:Sn?5???2???2???????2????3n?2???

2?2??2??2??2??2?

,以下略。

如an?

1n?n?1?

1

?

1n

?

1n?1

;an?

1n?1?

n

?n?1?n,

an?

?2n?1??2n?1?

?

1?11?

???等。

2?2n?12n?1?

⑤.倒序相加法.例:在1与2之间插入n个数a1,a2,a3,???,an,使这n+2个数成等差数列, 求:Sn?a1?a2?????an,(答案:Sn?

32n)

第三章不等式

1.不等式的性质:

a?b,b?c?a?c

a?b?

??a?c?b?d c?d?

a?b,c?R?a?c?b?c,推论:

a

?b?a?b?a?b?0?

?ac?bc;?ac?bc;????ac?bd?0

c?0?c?0?c?d?0?

④ a?b?0?an?bn?0;a?b?0?2.一元二次不等式及其解法:

a?

b?0

①.ax2?bx?c?0,ax2?bx?c?0,f?x??ax2?bx?c注重三者之间的密切联系。如:ax2?bx?c>0的解为:?<x<?, 则ax2?bx?c=0的解为x1??,x2??;函数f?x??ax?bx?c的图像开口向下,且与x轴交于点??,0?,??,0?。

2

对于函数f?x??ax2?bx?c,一看开口方向,二看对称轴,从而确定其单调区间等。 ②.注意二次函数根的分布及其应用.

如:若方程x2?2ax?8?0的一个根在(0,1)上,另一个根在(4,5)上,则有

f(0)>0且f(1)<0且f(4)<0且f(5)>0

3.不等式的应用:

①基本不等式:

当a>0,b>0且ab是定值时,a+b有最小值; 当a>0,b>0且a+b为定值时,

ab有最大值。 ②简单的线性规划:

Ax?By?C?0?A?0?表示直线Ax?By?C?0的右方区域. Ax?By?C?0?A?0?表示直线Ax?By?C?0的左方区域

①.找出所有的线性约束条件。

②.确立目标函数。

③.画可行域,找最优点,得最优解。

需要注意的是,在目标函数中,x的系数的符号,

当A>0时,越向右移,函数值越大,当A<0时,越向左移,函数值越大。

篇三:高二数学必修5知识点归纳

● 高二数学期中考知识点归纳资料

第一章 解三角形

1、三角形的性质:

①.A+B+C=?,?

A?B2

?

?

2

?

C2

?sin

A?B2

?cos

C2

②.在?ABC中, a?b>c , a?b<c ; A>B?sinA>sinB,

A>B?cosA<cosB, a >b? A>B

③.若?ABC为锐角?,则A?B>

?

2

,B+C >

?

2

,A+C >

?

2

;

a2?b2>c2,b2?c2>a2,a2+c2>b2 2、正弦定理与余弦定理:①.

(2R为?ABC外接圆的直径)

a?2Rsin

A、b?2RsinB、c?2RsinC sinA?

a2R

sinB?

12

b2R

、 sinC?

12

c2R

12

acsinB

2

2

2

面积公式:S?ABC?

2

2

2

absinC?

2

bcsinA?

2

2

②.余弦定理:a?b?c?2bccosA、b?a?c?2accosB、c?a?b?2abcosC

b?c?a

2bc

2

2

2

cosA?、cosB?

a?c

?b

2ac

222

、cosC?

a?b?c

2ab

222

3第二章 数列

1、数列的定义及数列的通项公式:

①. an?f(n),数列是定义域为N

的函数f(n),当n依次取1,2,???时的一列函数值② i.归纳法

若S0?0,则an不分段;若S0?0,则an分段

iii. 若an?1?pan?q,则可设an?1?m?p(an?m)解得m,得等比数列?an?m?

?Sn?f(an)

iv. 若Sn?f(an),先求a

1?得到关于an?1和an的递推关系式

S?f(a)n?1?n?1?Sn?2an?1

例如:Sn?2an?1先求a1,再构造方程组:??(下减上)an?1?2an?1?2an

?Sn?1?2an?1?1

2.等差数列:

① 定义:a

n?1?an=d(常数),证明数列是等差数列的重要工具。 ② 通项d?0时,an为关于n的一次函数;

d>0时,an为单调递增数列;d<0时,a

n为单调递减数列。

n(n?1)2

③ 前n?na1?

d,

d?0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。

④ 性质: ii. 若?an?为等差数列,则am,am?k,am?2k,…仍为等差数列。 iii. 若?an?为等差数列,则Sn,S2n?Sn,S3n?S2n,…仍为等差数列。 iv 若A为a,b的等差中项,则有A?3.等比数列:

① 定义:

an?1an

?q(常数),是证明数列是等比数列的重要工具。

a?b2

② 通项时为常数列)。

③.前n项和

需特别注意,公比为字母时要讨论.

④.性质:

ii.?an?为等比数列,则am,am?k,am?2k,?仍为等比数列

,公比为qk。

iii. ?an?为等比数列,则Sn,S2n?Sn,S3n?S2n,K仍为等比数列,公比为qn。 iv.G为a,b的等比中项,G??ab 4.数列求和的常用方法:

①.公式法:如an?2n?3,an?3n?1

②.分组求和法:如an?3n?2n?1?2n?5,可分别求出?3n?,?2n?1?和?2n?5?的和,然后把三部分加起来即可。

?1?

如an??3n?2????,

?2??1??1??1??1?

Sn?5???7???9???????(3n?1)??

?2??2??2??2?

1

2

3

4

2

3

n?1

n

?1?

??3n?2???

?2?

n

n?1

n

?1??1??1??1??1?

Sn?5???7???9???…+?3n?1?????3n?2???2?2??2??2??2??2?

1

2

3

n

n?1

?1??1??1??1??1?两式相减得:Sn?5???2???2???????2????3n?2???

2?2??2??2??2??2?

,以下略。

如an?

1n?n?1?

1

?

1n

?

1n?1

;an?

1n?1?

n

?n?1?n,

an?

?2n?1??2n?1?

?

1?11?

???等。

2?2n?12n?1?

⑤.倒序相加法.例:在1与2之间插入n个数a1,a

2,a3,???,an,使这n+2个数成等差数列, 求:Sn?a1?a2?????an,(答案:Sn?

32n)

第三章不等式

1.不等式的性质:

① a?b,b?c?a?c

a?b,c?R?a?c?b?c,推论:

a?b?

??a?c?b?d c?d?

a

?b?a?b?a?b?0?

??ac?bc;??ac?bc;??ac?bd?0

c?0?c?0?c?d?0?

④ a?b?0?an?bn?0;a?b?0?2.不等式的应用: ①基本不等式:

a?

b?0

当a>0,b>0且ab是定值时,a+b有最小值;

当a>0,b>0且a+b为定值时,ab有最大值。

…… 此处隐藏:1313字,全部文档内容请下载后查看。喜欢就下载吧 ……
高二数学必修五(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/zuowen/974612.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)