高二数学必修五
篇一:高二数学必修5全套教案(人教版)
1.1.1正弦定理
●教学目标
知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;
会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,
引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合
情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点
正弦定理的探索和证明及其基本应用。
●教学难点
已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程
一.课题导入
如图1.1-1,固定?ABC的边CB及?B,使边AC绕着顶点C转动。 思考:?C的大小与它的对边AB的长度之间有怎样的数量关系?
显然,边AB的长度随着其对角?C的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来?C B 二.讲授新课
[探索研究]
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图,在Rt?ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,
abc?sinA,?sinB,又sinC?1?ccc
abc则???csinAsinBsinCC abc从而在直角三角形ABC中,??sinAsinBsinC有
思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,(1)当?ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,
有CD=asinB?bsinA,则
同理可得
从而asinA?bsinB,csinC??bsinB?, Ac B sinAsinBsinC
(2)当?ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导) 思考2:还有其方法吗?
由于涉及边长问题,从而可以考虑用向量来研究这问题。
abc
???????(证法二):过点A作单位向量j?AC, 由向量的加法可得 AB?AC?CB
??????????????则 j?AB?j?(AC?CB)
????????????????∴j?AB?j?AC?j?CB
??????????0jABcos?90?A??0?jCBcos?900?C?
∴csinA?asinC,即?????????ac ??????abcbc同理,过点C作j?BC,可得 从而 ???sinAsinBsinC
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a
sinA?b
sinB?c
sinC
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,
即存在正数k使a?ksinA,b?ksinB,c?ksinC;
(2)a
sinAsinBsinCsinA
思考:正弦定理的基本作用是什么? ?b?c等价于a?bsinB,csinC?bsinB,asinA?csinC
①已知三角形的任意两角及其一边可以求其他边,如a?bsinA; sinB
②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinA?sinB。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]
例1.在?ABC中,已知A?32.00,B?81.80,a?42.9cm,解三角形。
解:根据三角形内角和定理, ab
C?1800?(A?B)?1800?(32.00?81.80)?66.20;
asinB42.9sin81.80
根据正弦定理, b???80.1(cm); sin32.00
asinC42.9sin66.20
根据正弦定理, c???74.1(cm). sin32.0评述:对于解三角形中的复杂运算可使用计算器。
练习:在?ABC中,已知下列条件解三角形。
(1)A?45,C?30,c?10cm, (2)A?60,B?45,c?20cm 例2. 在?ABC中,已知a?20cm,b?28cm,A?400,解三角形(角度精确到10,边长精确到1cm)。
解:根据正弦定理,
????
bsinA28sin400
sinB???0.8999.因为00<B<1800,所以B?640,或0 B?116.
⑴ 当B?640时, C?108?0A(?B0?)10?800?,(4?064asinC20sin760
c???30(cm). sin400
⑵ 当B?1160时,C?108?0A?(B0?)01?8,0?(4?01asinC20sin240
c???13(cm). sin40
应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
课堂练习
第4页练习第2题。
思考题:在?ABC中,a
sinAsinB三.课时小结(由学生归纳总结)
(1)定理的表示形式:?b?csinC?k(k>o),这个k与?ABC有什么关系? a?b?c?k?k?0?; sinAsinBsinCsinA?sinB?sinC
或a?ksinA,b?ksinB,c?ksinC(k?0) a?b?c?
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角;
②已知两边和其中一边对角,求另一边的对角。
四.课后作业:P10面1、2题。
1.2解三角形应用举例 第一课时
一、教学目标
1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语
2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力
二、教学重点、难点
教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解
教学难点:根据题意建立数学模型,画出示意图
三、教学设想
1、复习旧知
复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?
2、设置情境
请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
3、 新课讲授
(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解
(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,?BAC=51?,?ACB=75?。求A、B两点的距离(精确到
0.1m)
提问1:?ABC中,根据已知的边和对应角,运用哪个定理比较适当?
提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用 …… 此处隐藏:4173字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [高中作文]高一历史教学反思
- [高中作文]高一军训小结800字5篇
- [高中作文]高一新生简单自我介绍范文
- [高中作文]滁州中学高一博客圈
- [高中作文]高一励志主题班会
- [高中作文]如何开快递公司,聚和源快运揽财技高一
- [高中作文]人教版高一生物必修二目录表
- [高中作文]高一信息技术会考复习选择题
- [高中作文]高一历史必修一政治史复习提纲
- [高中作文]高一数学必修一公式大全
- [高中作文]高一地理会考题
- [高中作文]高一家长会家长发言稿
- [高中作文]高一英语必修一词组归纳
- [高中作文]高一数学综合知识点
- [高中作文]高一必修一化学方程式集合
- [高中作文]高一化学实验专题复习
- [高中作文]高一家长会班主任发言稿
- [高中作文]高一英语单词竞赛
- [高中作文]高一物理向心力的实例分析
- [高中作文]高一学生学情分析
- 合作成就共赢作文800字高中(共15篇)
- 故乡的夏天作文800字高中(汇总6篇)
- 高中日记700字:人为什么需要承诺
- 高中日记700字:留住记忆
- 如果不是那场雨作文800字高中(严选23篇
- 关于作文800字高中生(共42篇)
- 发现身边的美高三作文600字(赏析5篇)
- 我最熟悉的那个人600字作文高中(赏析26
- 致夕阳作文600字高中(大全19篇)
- 写事的作文600字优秀高中(通用32篇)
- 高中军训心得体会范文500字【三篇】
- 高中面对挫折作文400字
- 高中作文大全500字【三篇】
- 高中生优秀作文500字范文【三篇】
- 高中作文500字【五篇】
- 高中作文900字:话说冬至
- 高中生评语200字
- 我们的学校高中说明文1300字
- 秦穆公真愚人也高中生作文
- 高中说明文200字:再苦也要笑一笑




