高一数学必修一公式大全
篇一:新课标高中数学必修1-5公式大全
数学必修1-5常用公式及结论
必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性
(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法
2、集合间的关系:子集:对任意x?A,都有 x?B,则称A是B的子集。记作A?B真子集:若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作A?B 集合相等:若:A?B,B?A,则A?B
?
3. 元素与集合的关系:属于? 不属于:? 空集:?
4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为 A?B
交集:由集合A和集合B中的公共元素组成的集合叫交集,记为A?B
补集:在全集U中,由所有不属于集合A的元素组成的集合叫补集,
记为CUA 5.集合{a1,a2,?,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:N 整数集:Z有理数集:Q 实数集:R 二、函数的奇偶性
1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域) 2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y轴成轴对称图形;
(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y轴对称,那么这个函数是偶函数. 二、函数的单调性
1、定义:对于定义域为D的函数f ( x ),若任意的x1, x2∈D,且x1 < x2
① f ( x1 ) < f ( x 2 ) <=>f ( x1 ) – f ( x2 ) < 0 <=> f ( x )是增函数 ② f ( x1 ) > f ( x 2 ) <=>f ( x1 ) – f ( x2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减
三、二次函数y = ax2 +bx + c(a?0)的性质
*
?b4ac?b2
1、顶点坐标公式:???2a,4a
?
2.二次函数的解析式的三种形式
2
?4ac?b2b? ?, 对称轴:x??2a,最大(小)值:4a?
2
(1)一般式f(x)?ax?bx?c(a?0); (2)顶点式f(x)?a(x?h)?k(a?0); (3)两根式f(x)?a(x?x1)(x?x2)(a?0). 四、指数与指数函数 1、幂的运算法则:
(1)a m ? a n = a m + n ,(2)a?a?a
n
mnm?n
,(3)( a m ) n = a m n (4)( ab ) n = a n ? b n
n
n
?an1?a??nn0m
(5) ???n(6)a = 1 ( a≠0)(7)a?n (8)a?a(9)am?
ba?b?
1
a
n
2、根式的性质
(1
)?a.
(2)当n
?a; 当n
?|a|??
1
n
?a,a?0
.
??a,a?0
4、指数函数y = a x (a > 0且a≠1)的性质:
(1)定义域:R ; 值域:( 0 , +∞)(2)图象过定点(0,1)
5.指数式与对数式的互化: logaN?b?ab?N(a?0,a?1,N?0).
五、对数与对数函数
1对数的运算法则:
logN
(1)a b = N <=> b = log a N(2)log a 1 = 0(3)log a a = 1(4)log a a b = b(5)a a = N (6)log a (MN) = log a M + log a N (7)log a (
M
) = log a M -- log a N N
logbN
logba
(8)log a N b = b log a N (9)换底公式:log a N =
n
(10)推论 logamb?(11)log a N =
n
logab(a?0,且a?1,m,n?0,且m?1,n?1, N?0). m
1
(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A
logNa
(其中 e = 2.71828?) 2、对数函数y = log a x (a > 0且a≠1)的性质:
(1)定义域:( 0 , +∞) ; 值域:R(2)图象过定点(1,0)
六、幂函数y = x a 的图象:(1) 根据 a
例如:
y = x
y?
2
x?x y?
12
1
?x?1 x
七.图象平移:若将函数y?f(x)的图象右移a、上移b个单位, 得到函数y?f(x?a)?b的图象; 规律:左加右减,上加下减 八. 平均增长率的问题
2
如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,有y?N1(?p). 九、函数的零点:1.定义:对于y?f(x),把使f(x)?0的X叫y?f(x)的零点。即 y?f(x)的图象与X轴相交时交点的横坐标。
2.函数零点存在性定理:如果函数y?f(x)在区间?a,b?上的图象是连续不断的一条
曲线,并有f(a)?f(b)?0,那么y?f(x)在区间?a,b?内有零点,即存在c??a,b?, 使得f(c)?0,这个C就是零点。 3.二分法求函数零点的步骤:(给定精确度?)
x
a?b
2
(3)计算f(x1)①若f(x1)?0,则x1就是零点;②若f(a)?f(x1)?0,则零点
(1)确定区间?a,b?,验证f(a)?f(b)?0;(2)求?a,b?的中点x1?
x0??a,x1? ③若f(x1)?f(b)?0,则零点x0??x1,b?;
(4)判断是否达到精确度?,若a?b??,则零点为a或b或?a,b?内任一值。否 则重复(2)到(4)
必修2:一、直线与圆 1、斜率的计算公式:k = tanα=
y2?y1
(α ≠ 90°,x 1≠x 2)
x2?x1
2、直线的方程(1)斜截式 y = k x + b,k存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k存在; (3)两点式
y?y1x?x1xy
?(x1?x2,y1?y2) ;4)截距式 ??1(a?0,b?0)
y2?y1x2?x1ab
(5)一般式Ax?By?c?0(A,B不同时为0)
4、两点间距离公式:设P1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P1 P2 | =5、点P ( x 0 , y 0 )到直线l :
A x + B y + C = 0的距离:d?x1?x22?y1?y22
2
2
Ax0?By0?C
A?B
3
222
点P(x0,y0)与圆(x?a)?(y?b)?r的位置关系有三种若d?
则 d?r?点P在圆外;d?r?点P在圆上;d?r?点P在圆内. 9.直线与圆的位置关系(圆心到直线的距离为d)
直线Ax?By?C?0与圆(x?a)?(y?b)?r的位置关系有三种:
2
2
2
d?r?相离???0;d?r?相切???0;d?r?相交???0.
10.两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,O1O2?d
d?r1?r2?外离?4条公切线; d?r1?r2?外切?3条公切线;
r1?r2?d?r1?r2?相交?2条公切线; d?r1?r2?内切?1条公切线; 0?d?r1?r2?内含?无公切线.
11.圆的切线方程
(1)已知圆x?y?Dx?Ey?F?0.
①若已知切点(x0,y0)在圆上,则切线只有一条,其方程是
2
2
D(x0?x)E(y0?y)
??F?0. 22
D(x0?x)E(y0?y)
当(x0,y0)圆外时, x0x?y0y???F?0表示过两个切点
22
x0x?y0y?
的切点弦方程.
②过圆外一点的切线方程可设为y?y0?k(x?x0),再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为y?kx?b,再利用相切条件求b,必有两条切线. (2)已知圆x?y?r.
①过圆上的P0(x0,y0)点的切线方程为x0x?y0y?r; ②斜率为k
的圆的切线方程为y?kx?二、立体几何(一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。 2、垂直于同一平面的两直线平行。3 …… 此处隐藏:4135字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [高中作文]高一历史教学反思
- [高中作文]高一军训小结800字5篇
- [高中作文]高一新生简单自我介绍范文
- [高中作文]滁州中学高一博客圈
- [高中作文]高一励志主题班会
- [高中作文]如何开快递公司,聚和源快运揽财技高一
- [高中作文]人教版高一生物必修二目录表
- [高中作文]高一信息技术会考复习选择题
- [高中作文]高一历史必修一政治史复习提纲
- [高中作文]高一数学必修一公式大全
- [高中作文]高一地理会考题
- [高中作文]高一家长会家长发言稿
- [高中作文]高一英语必修一词组归纳
- [高中作文]高一数学综合知识点
- [高中作文]高一必修一化学方程式集合
- [高中作文]高一化学实验专题复习
- [高中作文]高一家长会班主任发言稿
- [高中作文]高一英语单词竞赛
- [高中作文]高一物理向心力的实例分析
- [高中作文]高一学生学情分析
- 合作成就共赢作文800字高中(共15篇)
- 故乡的夏天作文800字高中(汇总6篇)
- 高中日记700字:人为什么需要承诺
- 高中日记700字:留住记忆
- 如果不是那场雨作文800字高中(严选23篇
- 关于作文800字高中生(共42篇)
- 发现身边的美高三作文600字(赏析5篇)
- 我最熟悉的那个人600字作文高中(赏析26
- 致夕阳作文600字高中(大全19篇)
- 写事的作文600字优秀高中(通用32篇)
- 高中军训心得体会范文500字【三篇】
- 高中面对挫折作文400字
- 高中作文大全500字【三篇】
- 高中生优秀作文500字范文【三篇】
- 高中作文500字【五篇】
- 高中作文900字:话说冬至
- 高中生评语200字
- 我们的学校高中说明文1300字
- 秦穆公真愚人也高中生作文
- 高中说明文200字:再苦也要笑一笑