教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 作文大全 > 高中作文 >

高一数学必修四向量复习

来源:网络收集 时间:2025-09-14
导读: 篇一:高中数学必修四向量知识点 向量知识点总结 一、向量的概念 (1)向量:既有大小,又有方向的量; (2)数量:只有大小,没有方向的量; (3)有向线段的三要素:起点、方向、长度; (4)零向量:长度为0的向量; (5)单位向量:长度等于1个单位的向

篇一:高中数学必修四向量知识点

向量知识点总结

一、向量的概念

(1)向量:既有大小,又有方向的量; (2)数量:只有大小,没有方向的量;

(3)有向线段的三要素:起点、方向、长度; (4)零向量:长度为0的向量;

(5)单位向量:长度等于1个单位的向量; (6)平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行; (7)相等向量:长度相等且方向相同的向量。 二、向量加法运算

⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.

⑶三角形不等式:a?b?a?b?a?b. ⑷运算性质:

①交换律:a?b?b?a;②结合律:a?b?c?a?b?c; ③a?0?0?a?a。

⑸坐标运算:设a??x1,y1?,b??x2,y2?,则a?b??x1?x2y,1?y三、向量减法运算

⑴三角形法则的特点:共起点,连终点,方向指向被减向量; ⑵坐标运算:设a??x1,y1?,b??x2,y2?,则a?b??x1?x2y,1?y设?、?两点的坐标分别为

22

????

C a

?。

?

b

?

?,

a?b??C?????C

?x1,y1?

?x2,y2?

,则

????x1

x?,2y1

。y2 ??

四、向量数乘运算

⑴实数?与向量a的积是一个向量的运算叫做向量的数乘,记作?a; ①

?a??a;

②当??0时,?a的方向与a的方向相同;当??0时,?a的方向与a的方向相反;当

??0时,?a?0;

⑵运算律:①???a??????a;②?????a??a??a;③?a?b??a??b; ⑶坐标运算:设a??x,y?,则?a???x,y????x,?y?;

1

??

五、向量共线定理

向量aa?0与b共线,当且仅当有唯一一个实数?,使b??a;

??

bb?0设a??x1,y1?,其中b?0,则当且仅当x1y2?x2y1?0时,向量a、b??x2,y2?,

共线;

六、平面向量基本定理

??

如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数?1、?2,使a??1e1??2e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底) 七、分点坐标公式

设点?是线段?1?2上的一点,?1、?2的坐标分别是?x1,y1?,?x2,y2?,当?1?????2时,点?的坐标是?

?x1??x2y1??y2?

,?; 1????1??

八、平面向量的数量积

⑴a?b?abcos?a?0,b?0,0???180.零向量与任一向量的数量积为0;

??

a?b?ab;⑵性质:设a和b都是非零向量,则①a?b?a?b?0.②当a与b同向时,

2

当a与b反向时,a?b?

?ab;a?a?a?a或a?

2

a?b?ab;

⑶运算律:①a?b?b?a;②??a??b??a?b?a??b;③a?b?c?a?c?b?c; ⑷坐标运算:设两个非零向量a??x1,y1?,b??x2,y2?,则a?b?x1x2?y1y2,

22

a??x,y?,则a?x?y,或a?

2

????

??

设a??x1,y1?,b??x2,y2?,则a?b?x1x2?y1y2?0;

设a、b都是非零向量,a??x1,y1?,b?

?x2,y2?,?是a与b的夹角,则

cos??

a?bab

?

2

篇二:高一数学必修4_向量复习讲义[整理]

数学必修4平面向量

一、基本概念:

1、向量:既有大小又有方向的量叫向量.

?

????a

2、单位向量:长度为一个单位长度的向量。 与非零向量a共线的单位向量a0??

a

????

3. 平行向量:若非零向量a,b方向相同或相反,则a//b;规定零向量与任一向量平行 ????

4、向量相等:a?b? 模相等,方向相同;相反向量:a??b?模相等,方向相反 ?????

5、两个非零向量a、b的夹角:做OA=a;OB=b;?AOB叫做a与b的夹角。

6、坐标表示:i、j分别是与x轴、y轴同向的单位向量,若a?xi?yj,则?x,y?叫做

????

a的坐标。7.向量a在b方向上的投影:设?为a、b的夹角,则acos?为a在b方向上

??

?

的投影

二、基本运算:

三、基本定理、公式:

???

1、平面向量基本定理:若e1与e2不共线,则对平面内的任意一个向量a,有且只有一对

实数?1、?2;使得a??1e1??2e2。

?

2、向量的模:a=co?s?

?

x?y

22

??

;非零向量a与b的夹角:

a?b?

x1x2?y1y2x1?y1

2

2

x2?y2

22

?

x1y2?x2y1;向量垂直:a⊥

??

3、向量平行:a∥b

?a??b?

?

b?a?b?0?x1x2?y1y2?0

四、基础训练

??

(1

)已知?2?3,且a?b?4,则向量b在向量a上的投影为

(2)已知A(3,y),B(?5,2),C(6,?9)三点共线,则y=_________.

?????????

(3)非零向量a和b满足:|a|?|b|?|a?b|,则a与a?b的夹角等于. 五、典例讲解.

??????????????

例1. 已知AB?a?(1,2),BC?b?(?3,2),CD?(6,4)(1)证明:A,B,D三点共

????????

线.(2)k为何值时,① 向量ka?b与a?3b平行 ② 向量ka?b与a?3b垂直

????????????

(1,7),OB?(5,1),OP?(2,1)例2、平面内有向量OA?,点Q为直线OP上一

????????

动点,1)求QA?QB取最小值时,点Q的坐标 2)当点Q满足1)的条件和结论时,求

cos?AQB的值。

????

例3. 已知向量a?(sin?,1),b?(1,cos?),??(?,)

22

??????

(1)若a?b 求?的值。 (2)求a?b的最小值.(3)求函数y?f(?)=a·b的单调

增区间

六、巩固练习

1.已知平面内三点A(-1,0),B(x,6),P(3,4),且AP=?PB,x和?的值分别为( ) A.-7,2 B.5,2 C.-7,

25

???

???

D.5,

25

2、向量a,b

?6

?10? 3

、已知

?6,

?8

??10??. 4、已知a?e1+e2,b?2e1-e2,则向量a+2b与2a-b( ) A、一定共线 B、一定不共线 C、仅当e1与e2共线时共线D、仅当e1=e2时共线 5、已知?ABC顶点A(―1,?为__________

????????

6.已知O(0,0)和A(6,3)两点,若点P在直线OA上,且PA?2OP,又P是线段

12

12

),B(2,3)及重心坐标G(1,),则顶点C的坐标

OB的中点,则点B的坐标是7、已知|a|=|b|,a?b,且(a+b)?(ka-b),则k的值是( ) A.1B.-1 C.0D.-2

?????

8、已知a?(1,2),b?(1,1),且a与a??b的夹角为锐角,则实数?的取值范围

为_____________________

9、已知点O(0,0),A(1,2),B(4,5),P为一动点,及OP?OA?tAB, (1)t为何值时,P在x轴上?P在y轴上?P在第二象限?

(2)四边形OABP能否成为平行四边形?若能,求出相应的t值;若不能,请说明理由。

?

?

?

?

???

?

????

10、已知a?1,b?2,且a与b的夹角?为600

?????

2

(1)求a?b,(a?2b),a?3b

???

(2)证明:a?b与a垂直

?

?

11、已知:a、b、c是同一平面内的三个向量,其中a=(1,2)

?

…… 此处隐藏:4183字,全部文档内容请下载后查看。喜欢就下载吧 ……
高一数学必修四向量复习.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/zuowen/958381.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)