教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 基础教育 >

2020年中国天线行业发展概况及市场发展前景分析

来源:网络收集 时间:2026-01-13
导读: 2020年中国天线行业发展概况及市场发展前景分析 一、天线——信号收发的重要关卡 天线的应用包括基站侧与终端侧,而无论在基站还是在终端,天线都是信号发射与接收的关卡,天线性能的好坏,直接影响通信的质量。 1、终端天线概况 手机终端的通信模块主要分为

2020年中国天线行业发展概况及市场发展前景分析

一、天线——信号收发的重要关卡

天线的应用包括基站侧与终端侧,而无论在基站还是在终端,天线都是信号发射与接收的关卡,天线性能的好坏,直接影响通信的质量。

1、终端天线概况

手机终端的通信模块主要分为天线、射频前端模块、射频收发模块、基带信号处理。射频前端介于天线与射频收发之间,可以分为接收通道和发射通道,从线路看信号传输:其接收通道:信号—天线—天线开关—滤波器/双工器—LNA —射频开关—射频收发—基带;其发射通道:基带—射频收发—射频开关—PA —滤波器/双工器—天线开关—天线—信号。

智能手机通信系统结构示意图

天线用于无线电波的收发,连接射频前端,是接收通道的起点与发射通道的终点。随着信息技术的不断发展,无线网络频段增加、频率升高,驱使手机天线的使用增加,同时,为实现高速、多频率、少损耗的传输,终端天线通过材料、结构、工艺的不断改进实现性能的提升。天线整体经历了从金属片到FPC到LDS 的演变,目前LDS在高端机上使用比较广泛。而按功能分类,天线主要包括主天线、GPS定位天线、Wifi天线、NFC天线、FM天线等。

天线主要类型

2、基站天线概况

基站天线与终端天线相似,也是信号的转换器,但基站天线连接基站设备与终端用户。基站天线的功能包括无线电波的发射与接收,信号发射时,基站调制的导行波经天线转换为电磁波信号发送;信号接收时,终端调制后的电磁波信号经天线转换为导行波,传送到主设备。

天线工作原理示意图

天线的主要工作原理为控制导线的距离改变辐射的强弱。天线导线间存在交变电流时,将辐射出电磁波,而辐射能力与导线的形状与长度相关。导线形状变化时,当导线间距离较近时,电场被束缚在两导线之间,辐射微弱;两导线张开时,电场散播在周围空间中,辐射增强。导线长度变化时,当导线长度远小于辐射电磁波波长时,辐射微弱;当导线长度与辐射的电磁波波长相似时,辐射较强。上述能产生显著辐射的直导线称为振子,振子就是一个简单的天线。天线按不同的分类方式有多种种类。

基站天线分类

3、5G时代,天线迎双频段市场

当前通信行业最大的投资机会莫过于5G,其核心在于多元化业务场景。5G的三大典型应用场景包括eMBB(移动宽带增强)、uRLLC(超高可靠、超低时延通信)、mMTC(大规模物联网),这意味着5G不仅要解决人与人之间的连接,还要满足人与物、物与物之间的互联。

5G主要业务场景及关键指标

二、终端天线可能发生的变化?

1、材料变化:天线应用趋向LDS+LCP方向

天线未来将走向LCP+LDS方向。在基材变迁上,天线经历了从金属片—PI (聚酰亚胺)—LCP(液晶聚合物)的过程,LCP材质具有低介电常数、低介电损耗的特质,适用于高频信号的传输;低吸湿率的特质保证手机的防水性。LCP 天线可以实现射频传输、射频传输线与天线集成,以及部分替代FPC、PCB的功能。但LCP成本较高,目前在中高端机中使用较为常见。另外,为改善PI的缺点,MPI(改性PI)目前使用也较为广泛,MPI性能介于PI与LCP间,成本较LCP低廉,未来有望在中低频扩大使用。

天线基材材料比较

在手机天线工艺技术变迁上,天线经历了从金属弹片—FPC—LDS的变化,LDS(Laser-Direct-Structuring)激光直接成型技术是利用激光镭射技术,按数位线路烧除表面抗蚀刻阻剂,再在支架上化镀形成金属,完成将天线直接打印于手机外壳的目的。LDS天线不占用手机内部空间,增加了空间使用率;同时避免了内部元器件的干扰,保证手机信号;此外,天性性能较为稳定,精确度较高。目前除LDS技术外,还有泛友科技提出的LRP技术,它通过三维印刷工艺,将导电银浆高速精准地涂敷到工件表面,形成天线形状,然后通过三维控制激光修整,以形成高精度的电路互联结构。

2、数量变化:5G频段增加,单机天线数量提升

5G网络的部署采用两种频段FR1和FR2,FR1是低频段Sub-6GHz(频率范围450MHz-6GHz),特征是传输距离远、覆盖面积大;FR2是高频段mmWave(频率范围24.25GHz-52.60GHz),特征是传输速度快,容量大,但覆盖面积有限。相比于4G,5GNR除了包含部分LTE频段外,同时新增部分频段。为实现高速、海量连接与低时延的体验,5G网络无法使用3G/4G的固定广播波束,5G波束是一组有合适宽度与多方向的窄波束,而创建此种特征的波束意味着5G天线必须支持全频段,全频段则需增加大量天线阵列。到2020年,5G应用支持的频段数

量将实现翻番,新增50个以上通信频段,全球2G/3G/4G/5G合计支持的频段将达到91个以上。5G在我国的布局大致分为三个阶段,4.5G阶段(4G向5G过渡的阶段,NSA与SA网络并存)、5G初步阶段(以Sub-6GHz频段为主的5G阶段)、5G深入阶段(mmWave商用,Sub-6GHz与mmWave共存)。当前我国5G仍处在4GLTE 到5GNR的过渡阶段,频段的利用以FR1为主。2018年12月6日,工信部公布了运营商5G试验频率,中国移动分配得到N41、N79频段、中国联通为N78频段、中国电信为N78频段,全网通手机则涵盖N41、N78、N79频段,5G频段数量确定性增加。

5GNR频段增加

工信部划分我国5G频段

5G商用初期,智能手机仍将以支持低频段为主,Sub-6GHz拥有更强的覆盖能力。3GPPTS38.213协议中说明,5G波束需满足5个边带(SSB),其中,对于3GHz以下的频段,SSB波束的上限为4个,对于3-6GHz的频段,上限为8个。为满足5G下不同场景高低频段需求,5G天线支持全频段波束赋,5G形成形波束的生成至少需要2个天线阵列。若手机需支持全频段,至少需要4个天线,采用4T4RMIMO技术,频段数量增长将直接驱动天线数量大幅增长。

5G波束需要更多天线

综合来看,典型4G手机天线数量为2-4个,包括2个通信天线,1个Wifi 天线,1个GPS天线。而5G手机天线数量预计为8-10个,包括2个4G通信天线,4个5G通信天线,2个Wifi天线,1个GPS天线等。

3、布局变化:设计难度提升,AiP封装加快应用

5G手机功能增加,促使手机内部功能模块增多;此外,手机应用增多使得5G手机耗电量大幅提升,为满足日常需求,电池体积扩大;而手机整体体积提升有限,因此内部空间如何实现合理布局是5G手机的一大难题。为配合5G 手机设计合理化,内部天线的设计布局难度增加,制备复杂度提升,同时内部模块集成化的趋势愈加明确,助推手机内部天线价值上升。

尤其发展至后期,5G毫米波段使用成熟。毫米波作为高频段,将以大带宽实现数据的高速传输,还可利用极密的空间复用度来增加容量。传统通信利用基站与手机间单天线到单天线进行电磁波传播,5G时代为满足大容量与高速率

的需求,引入波束成形技术,在基站侧采用阵列天线,自动调节各天线发射信号的相位,使手机侧可以收到叠加的电磁波增强信号强度。

毫米波手机天线有多种应用模式:一个手机对两个基站、一个基站对一个手机、一个基站对几个手机模式等不同应用场景,影响终端手机天线布局。高频毫米波的传输损耗大,因此毫米波手机可能会呈现以下布局特征:一是协同化设计,天线与芯片位置靠近,将天线与射频前端集成化,即采用基于SiP封装的AiP(Antenna-in-Package),减少高频短波下的信号损耗;二是采用两组线性相控阵,可以同时寻找新信号与识别旧信号。

这将使得手机内部设计布局难度提升,AiP封装加快应用,射频前端芯片价值提升 …… 此处隐藏:3871字,全部文档内容请下载后查看。喜欢就下载吧 ……

2020年中国天线行业发展概况及市场发展前景分析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/335245.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)