教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 互联网资料 >

相似三角形经典大题

来源:网络收集 时间:2025-09-15
导读: 相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6, B和 C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h. (1)请你用含x的代数式表示h. (2)将△AMN

相似三角形经典大题解析

1.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6, B和 C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h. (1)请你用含x的代数式表示h.

(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少?

2.如图,抛物线经过A(4,,0)B(1,,0)C(0, 2)三点.

(1)求出抛物线的解析式;

(2)P是抛物线上一动点,过P作PM x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

3.如图,已知直线l1:y

28

x 与直线l2:y 2x 16相交于点C,l1、l2分别交x轴于33

A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且

点G与点B重合.

(1)求△ABC的面积;

(2)求矩形DEFG的边DE与EF的长;

(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

4.如图,矩形ABCD中,AD 3厘米,AB a厘米(a 3).动点M,N同时从B点

出发,分别沿B A,B C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒. (1)若a 4厘米,t 1秒,则PM ______厘米;

(2)若a 5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;

(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;

(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.

N

5.如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式;

(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?

6.在直角梯形OABC中,CB∥OA,∠COA=90º,CB=3,OA=6,BA=5.分别以OA、

OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系. (1)求点B的坐标; (2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求

直线DE的解析式;

(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使

以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.

.7.在图15-1至图15-3中,直线MN与线段AB相交 于点O,∠1 = ∠2 = 45°.

(1)如图15-1,若AO = OB,请写出AO与BD

的数量关系和位置关系;

(2)将图15-1中的MN绕点O顺时针旋转得到

图15-2,其中AO = OB. 求证:AC = BD,AC ⊥ BD;

(3)将图15-2中的OB拉长为AO的k倍得到

图15-3,求

10.如图,已知过A(2,4)分别作x轴、y轴的垂线,垂足分别为M、N,若点P从O点出发,沿OM作匀速运动,1分钟可到达M点,点Q从M点出发,沿MA作匀速运动,1分钟可到达A点。 (1)经过多少时间,线段PQ的长度为2?

(2)写出线段PQ长度的平方y与时间t之间的函数关系式和t的取值范围;

(3)在P、Q运动过程中,是否可能出现PQ⊥MN?若有可能,求出此时间t;若不可能,请说

明理由;

(4)是否存在时间t,使P、Q、M构成的三角形与△MON相似?若存在,求出此时间t;若不可

能,请说明理由;

BD

的值. AC

11、如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.

⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点. ⑵在△ABC中,∠A<∠B<∠C.

①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹); ②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.

B

C

B

C

B

C

A

A

A

…… 此处隐藏:354字,全部文档内容请下载后查看。喜欢就下载吧 ……
相似三角形经典大题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/1937051.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)