相似三角形经典大题
相似三角形经典大题解析
1.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6, B和 C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h. (1)请你用含x的代数式表示h.
(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少?
2.如图,抛物线经过A(4,,0)B(1,,0)C(0, 2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
3.如图,已知直线l1:y
28
x 与直线l2:y 2x 16相交于点C,l1、l2分别交x轴于33
A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且
点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.
4.如图,矩形ABCD中,AD 3厘米,AB a厘米(a 3).动点M,N同时从B点
出发,分别沿B A,B C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒. (1)若a 4厘米,t 1秒,则PM ______厘米;
(2)若a 5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.
N
5.如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?
6.在直角梯形OABC中,CB∥OA,∠COA=90º,CB=3,OA=6,BA=5.分别以OA、
OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系. (1)求点B的坐标; (2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求
直线DE的解析式;
(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使
以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
.7.在图15-1至图15-3中,直线MN与线段AB相交 于点O,∠1 = ∠2 = 45°.
(1)如图15-1,若AO = OB,请写出AO与BD
的数量关系和位置关系;
(2)将图15-1中的MN绕点O顺时针旋转得到
图15-2,其中AO = OB. 求证:AC = BD,AC ⊥ BD;
(3)将图15-2中的OB拉长为AO的k倍得到
图15-3,求
10.如图,已知过A(2,4)分别作x轴、y轴的垂线,垂足分别为M、N,若点P从O点出发,沿OM作匀速运动,1分钟可到达M点,点Q从M点出发,沿MA作匀速运动,1分钟可到达A点。 (1)经过多少时间,线段PQ的长度为2?
(2)写出线段PQ长度的平方y与时间t之间的函数关系式和t的取值范围;
(3)在P、Q运动过程中,是否可能出现PQ⊥MN?若有可能,求出此时间t;若不可能,请说
明理由;
(4)是否存在时间t,使P、Q、M构成的三角形与△MON相似?若存在,求出此时间t;若不可
能,请说明理由;
BD
的值. AC
11、如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点. ⑵在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹); ②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
B
①
C
B
②
C
B
③
C
A
A
A
…… 此处隐藏:354字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [互联网资料]2022年厦门大学机电工程系824机械设计
- [互联网资料]东南大学2022年硕士研究生拟录取名单公
- [互联网资料]能源调研报告(精选多篇)
- [互联网资料]初三英语下学期 中考英语 语法填空训练
- [互联网资料]2022内蒙古选调生行测常识备考:新事物
- [互联网资料]自驾必备!在新西兰租什么样的车自驾游
- [互联网资料]佛教素食菜谱44页未完
- [互联网资料]盈利能力分析外文翻译
- [互联网资料]2022年南昌航空大学音乐学院736马克思
- [互联网资料]优选外贸跟单实习报告总结(精品版)
- [互联网资料]银行新员工培训总结
- [互联网资料]2_year_visa_new_guidance_190316
- [互联网资料]天津市五校宝坻一中静海一中杨村一中芦
- [互联网资料]2007--2008学年第一学期高三数学宁波市
- [互联网资料]Chromatic framework for vision in ba
- [互联网资料]幼儿园大班上学期美术教案《心愿树》含
- [互联网资料]2022年华中农业大学信息学院820微型计
- [互联网资料]硬盘坏道的表现 __硬盘使用久了
- [互联网资料]江苏省2016年会计从业资格考试《会计基
- [互联网资料]公共场所卫生监督试卷全解
- 高级英语第一册所有修辞方法及例子总结
- 综合交通枢纽规划与城市发展
- 沃尔玛的企业文化案例分析
- 美国Thanksgiving Day 感恩节 介绍
- PEP六年级英语上册Unit6How do you fee
- 最齐全的中国大型商场购物中心名单
- 数据结构实验报告八—哈夫曼编译码
- 杭州市余杭区人民政府(通知)
- 七年级语文成语运用专项训练
- 微观经济学第三章 消费者行为 课后习题
- 对_钱学森之问_的思考
- Excel_三级联动_下拉菜单
- 办公用品需求计划申请表
- 对外汉语教材必须要知道的发展史
- 挑战杯大学生学术科技作品竞赛作品申报
- 举办民办教育培训机构应具备下列条件
- 太阳能路灯项目设计方案
- 2013年八年级上最新人教版新教材Unit3I
- 【历史】 6-4 《近代科学之父牛顿》 课
- 高中生物《第四章 第二节 探讨加酶洗衣