教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 互联网资料 >

基础拓扑学-教学大纲

来源:网络收集 时间:2026-01-28
导读: 拓扑学(Topology) 一、基本信息 适用专业:数学与应用数学专业 课程编号: 教学时数:72学时 学 分:4 课程性质:专业核心课 开课系部:数学与计算机科学院 使用教材:梁基华,蒋继光《拓扑学基

拓扑学(Topology)

一、基本信息

适用专业:数学与应用数学专业

课程编号:

教学时数:72学时

学 分:4

课程性质:专业核心课

开课系部:数学与计算机科学院

使用教材:梁基华,蒋继光《拓扑学基础》.高等教育出版社

参考书

[1](美)亚当斯 著,沈以淡 等译《拓扑学基础及应用》.机械工业出版社;

[2] Munkries "Topology" 2nd ed. Prentice Hall;

[3]尤承业《基础拓扑学讲义》. 北京大学出版社.

二、课程介绍

拓扑学要求掌握一般拓扑学的基本知识,学习处理拓扑学问题的基本方法。了解拓扑学与其他一些学科的联系,强化抽象思维与逻辑推理能力,提高数学素养,为进一步学习奠定基础

三、考试形式

考试课程,考试成绩由平时成绩和期末考试组成,平时作业占百分之二十,,期末考试百分之八十。期末考试是闭卷的形式,重点考察学生的解题能力和基础理论。

四、课程教学内容及课时分配

第一章 集,映射与序结构

要求

(1) 熟练笛卡儿积和商集的构造。

(2) 了解选择公理与等价的引理,并能在证明中正确应用。

(3)掌握映射的基本性质

(4)了解偏序集,保序映射,定向与可滤,上,下确界,格与完备格的概念 主要内容

作为准备,本章介绍有关集合的基本概念,可数集与不可数集的有关结果。集合的交,并,补,笛卡儿积,商集运算极其性质,刻画。选择公理和Zorn引理。映射极其基本性质,偏序集的有关概念和结果,保序映射,序同构。

难点 定向与可滤,上,下确界,格与完备格的概念

课时安排(8学时)

a) 映射及其性质(1学时)

b) 序论基础(6学时)

c) 笛卡儿积与选择公理(1学时)

第二章 拓扑空间

要求

本章是拓扑学最基础的内容,要求理解,熟悉本章的各种概念及其相互联系。熟练应用生成拓扑的各种方法,了解几个具体的拓扑空间。理解分离性和可数性及其等价刻画。 主要内容

拓扑空间的定义,开集,闭集。生成拓扑的各种方法。基,邻域,闭包,内部极其刻画。 正规,正则分离性。连续映射极其等价刻画,同胚映射与拓扑性质。网与滤子的收敛,相互关系。乘积空间,映射的乘积和乘性问题。

重难点 拓扑空间、基、网与漉子的收敛、连续映射

课时安排(16学时)

a) 拓扑空间,开集,基,邻域(2学时)

b) 闭包,内部与分离性(3学时)

c) 连续映射与同胚(3学时)

d) 网与漉子的收敛(4学时)

e) 乘积空间(4学时)

第三章 几类重要的拓扑空间

要求

这一章是一般拓扑学的经典内容,在数学的其他学科也有着重要的应用。因此要求理解这几类空间的定义,等价刻画,基本性质以及相互联系。

主要内容

度量空间,度量拓扑,基本性质。可度量化空间,完备度量空间。正规性和完全正则性, Uryson引理和Tietze扩张定理。收缩映射与绝对收缩映射,Tychonoff嵌入定理。紧空间极其基本性质,可度量化空间,完备度量空间。正规性和完全正则性度量空间的刻画与性质。紧化理论。

重难点 可度量化空间、完备度量空间、正规性、完全正则性、紧性

课时安排(16学时)

a)度量空间(4学时)

b) 具有函数分离性的空间(4学时)

c) 紧空间与紧化(4学时)

d) 连通与道路连通空间(4学时)

第四章 拓扑与序结构

要求

了解处理拓扑学问题的另一种方法,拓扑与序结构之间的有机联系。

主要内容

分配格与连续格极其刻画,拓扑与序结构的有机联系。局部紧空间及其性质,以及与连续格的相互联系。分配格和布尔代数的拓扑表示定理。Stone空间的刻画

课时安排(16学时)

a) 具有分配性的格(4学时)

b) Sober空间与特殊序(4学时)

c) 局部紧空间(4学时)

d) Stone 对偶理论(4学时)

第五章 基本群

要求

理解商空间和商映射的概念,掌握利用商空间粘和曲面的方法。了解用代数学方法处理拓

扑学问题的基本思想。了解基本群及其基本性质,以及简单空间的基本群的计算方法 主要内容

商空间和商映射,各种经典的几何曲面的商空间刻画。闭曲面的构造。基本群的建立及其基本性质。道路与同伦提升定理。几类基本空间的基本群的计算。代数基本定理和Brower不动点定理的证明

课时安排(16学时)

e) 商空间与各种曲面的制作(4学时)

f) 基本群的概念与性质(4学时)

g) 覆盖空间(4学时)

h) 基本群的计算与应用(4学时)

《拓扑学》考试大纲

院 系:数学与计算机科学学院

课程名称:拓扑学(第二学期)

使用专业:数学与应用数学专业

学 时:72 其中,理论学时:72 实践学时:0

学 分:4

一、设课目的:

拓扑学要求掌握一般拓扑学的基本知识,学习处理拓扑学问题的基本方法。了解拓扑学与其他一些学科的联系,强化抽象思维与逻辑推理能力,提高数学素养,为进一步学习奠定基础.

二、课程教学内容和教学目标:

通过本门课程的教学,使学生掌握点集拓扑学概论基本理论和基本方法,培养学生高度的抽象思维能力,严密的逻辑思维能力。让学生了解现代拓扑学的发展现状,为以后的教学或科研工作打下良好的基础.

三、课程考核的基本形式、内容和要求:

本课程考核分为两部分:形成性考核和课程期末考试

(一)形成性考核

形成性考核部分分为:平时考勤(占20%)、作业(占70%)、课堂提问情况(占10%)这三个部分。要求随时检查学生考勤,批改作业,敦促学生边学边做。

学生应按时完成各阶段的平时作业。对于抄袭作业的或不按时完成的应给予说服教育,严重者应给予扣分处理。

(二)课程期末考试

期末考试采用笔试闭卷形式。考试命题由教研室集体讨论,任课教师可参与命题。本课程期末考试的命题依据是专业教学计划、课程教学大纲以及使用教材。 本课程的试卷涉及该教材所含的有关知识内容及练习,其中重点内容为:定向与可滤,上,下确界,格与完备格的概念 ;拓扑空间的定义,开集,闭集。生成拓扑的各种方法。基,邻域,闭包,内部极其刻画。 正规,正则分离性。连续映射极其等价刻画,同胚映射与拓扑性质。网与滤子的收敛,相互关系。乘积空间,映射的乘积和乘性问题;度量空间,度量拓扑,基本性质。可度量化空间,完备度量空间。正规性和完全正则性,Uryson引理和Tietze扩张定理。收缩映射与绝对收缩映射,Tychonoff嵌入定理。紧空间极其基本性质,可度量化空间,完备度量空间。正规性和完全正则性度量空间的刻画与性质。紧化理论;

分配格与连续格极其刻画,拓扑与序结构的有机联系。局部紧空间及其性质,以及与连续格的相互联系。分配格和布尔代数的拓扑表示定理。Stone空间的刻画;商空间和商映射,各种经典的几何曲面的商空间刻画。闭曲面的构造。基本群的建立及其基本性质。道路与同伦提升定理。几类基本空间的基本群的计算。代数基本定理和Brower不动点定理的证明.

四、考核的组 …… 此处隐藏:1366字,全部文档内容请下载后查看。喜欢就下载吧 ……

基础拓扑学-教学大纲.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/1936631.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)