空间向量 距离的计算
空间距离的计算
学习目标:1.能借助空间几何体内的位置关系求空间 的距离; 2.能用向量方法解决点面、线面、面面的 距离的计算问题,体会向量方法在研究几 何问题中的作用; 3. 探究题型,总结解法步骤。
复习回顾:1.我们所学距离有哪几种?
2.已知,A(1,2,0),B(0,1,1),C(1,1,2) 试求平面ABC的一个法向量.
一、求点到平面的距离如图 A , 空间一点 P 到平面 的距离为 d,已知平面 的
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
分析:过 P 作 PO⊥ 于 O,连结 OA.
Pn
则 d=| PO |= | PA | cos APO.∵ PO ⊥ , n , ∴ PO ∥ n . ∴cos∠APO=|cos PA, n |.∴d=| PA ||cos PA, n |=| n|
A
O
| PA | | n | | cos PA, n |
=
| PA n | |n|
.
这个结论说明,平面外一点到平面的距离等于连结此点与平面上的任一点 (常选特殊点)的向量在平面的法向量上的投影的绝对值
例1、已知正方形ABCD的边长为4,GC⊥ 平面ABCD,GC=2,E、F分别是AB、AD的 z 中点,求点B到平面GEF的距离。
G
x D F A
C
E
y
B
例: 1 如图,已知正方形
ABCD 的边长为 4,E、F 分别是 AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点 B 到 z 平面 EFG 的距离. G 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).EF (2, 2,0), EG ( 2, 4, 2),
设平面 EFG 的一个法向量为 n ( x, y, z )
xF
D
C
取n (1,1, 3) ,BE (2,0,0) d | n BE| n
2 x 2 y 0 n EF, n EG 2 x 4 y 2z 0 A
E
y
B
2 11 2 11 . 点 B 到平面 EFG 的距离为 . 11 11
求点到平面的距离的步骤: ⑴ 建立空间直角坐标系,写出平面内两个 不共线向量的坐标; ⑵ 求平面的一个法向量的坐标; ⑶ 找出平面外的点与平面内任意一点连接 向量的坐标; ⑷ 代入公式求出距离.
练习1:如图, ABCD 是矩形, PD 平面 ABCD , PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.P
N D M A B C
解:如图,以 D 为原点建立空间直角坐标系 D-xyz 则 D(0,0,0),A( 2 a ,0,0),B( 2 a ,a ,0),C(0,a ,0),P(0,0,a )
2 2 1 1 a , 0, 0) N ( a , a, a ) ∵ M 、N 分别是 AD 、PB 的中点, ∴ M ( 2 2 2 2
1 1 2 2 z ∴ MC ( a , a , 0) , MN (0, a , a ) , MA ( a , 0, 0) P 2 2 2 2 设 n ( x, y, z ) 为平面 MNC 的一个法向量, ∴ n MN , n MC 2 N ∴ n MC ax ay 0 且 C D y 2 a a M n MN y z 0 2 2 2 A 解得 x y z , B 2 x ∴可取 n ( 2,1, 1)∴d MA n n a a A MNC 即点 到平面 的距离为 . 2 2
二、求直线与平面的距离例2、已知正方形ABCD的
边长为4,CG⊥平面ABCD, CG=2,E、F分别是AB、AD的中点,求直线BD到平面 z GEF的距离。
G
d
| n BE| n
2 11 . 11
x DF A
C
E
y
B
练习2: 正方体ABCD-A1B1C1D1棱长为1,求AC与平 面DA1C1的距离 DA n D1 C1 d nA1 B1
DA B
C
三、求平面与平面间距离例3、正方体ABCD-A1B1C1D1棱长为1,
求平面A1DC1与平面AB1C的距离D1 A1 B1 C1
d C
DA n n
DA B
练习3、在边长为1的正方体ABCD-A1B1C1D1中, M、N、E、F分别是棱A1B1、A1D1、B1C1、 C1D1的中点,求平面AMN与平面EFDB的距离。z
d
AB n nA1
N
D1
F E
C1
M B1 D
C B
y
x
A
小结:怎样利用向量求距离? 点到平面的距离:连结该点与平面上任意一点的向量在 平面法向量上投影的绝对值。 直线到平面的距离:转化为点到平面的距离。 平行平面间的距离:转化为直线到平面的距离、点到平 面的距离。
作业:P50 A组2,3
…… 此处隐藏:261字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [教学研究]2012西拉科学校团少队工作总结
- [教学研究]建筑工程公司档案管理制度
- [教学研究]小学数学人教版六年级上册圆的周长和面
- [教学研究]ERP电子行业解决方案
- [教学研究]钢支撑租赁合同范本
- [教学研究]预应力自动张拉系统用户手册Rev1.0
- [教学研究]MOOC课程:金瓶梅人物写真(每章节课后
- [教学研究]追加被执行人申请书(适用追加夫妻关系)
- [教学研究]2014年驾考科目一考试最新题库766
- [教学研究]2013-2014学年度九年级物理第15章《电
- [教学研究]新版中日交流标准日本语初级下26课-客
- [教学研究]小导管注浆施工作业指导书
- [教学研究]一般财务人员能力及人岗匹配评估表
- [教学研究]打1.2.页 小学一年级暑假口算100以内加
- [教学研究]学习贯彻《中国共产党党和国家机关基层
- [教学研究]2012年呼和浩特市中考试卷_35412
- [教学研究]最简易的电线电缆购销合同范本
- [教学研究]如何开展安全标准化建设
- [教学研究]工作分析与人岗匹配
- [教学研究]2016-2017学年高中历史第七单元现代中
- 山东省义务教育必修地方课程小学三年级
- 台湾宜兰大学互联网交换技术课程 01_In
- 思想品德:第一课《我知我家》课件(人
- SAR合成孔径雷达图像点目标仿真报告(附
- 利辛县“十三五”规划研究报告
- 2015-2020年中国手机APP行业市场发展趋
- 广告策略、创意表现、媒体方案
- 企业如何申请专利的的几点思考
- 《中国教育简史》网上作业
- 高中历史第二单元西方人文精神的起源及
- 年终晚会必备_精彩的主持稿_精心整理_
- 信息工程专业自荐书
- 2019高考历史人教版一轮练习:第十二单
- JAVA俱乐部管理系统软件需求规格说明书
- 2016-2021年中国小型板料折弯机行业市
- (人教新课标)六上_比的基本性质课件PPT
- 辽宁省公务员考试网申论备考技巧:名言
- 神经阻滞麻醉知情同意书
- 施工企业信息填报、审核和发布的相关事
- 初一(七年级)英语完形填空100篇




