OG中的新GRE数学题解析(13)
OG中的新GRE数学题解析(13)
小编在此与大家分享新GRE OG中与新GRE数学的相关内容,希望各位在2015年能够搞定GRE数学真题。
17.Let S be the set of all positive integers n such that n2 is a multiple of both 24 and 108. Which of the following integers are pisors of every integer n in S ?
Indicate all such integers.
A 12
B 24
C 36
D 72
这个题有点小复杂,我先把OG上的解答贴上来。再写我自己的
To determine which of the integers in the answer choices is a pisor of every positive integer n in S, you must first understand the integers that are in S. Note that in this question you are given information about n2, not about n itself. Therefore, you must use the information about n2 to derive information about n. The fact that n2 is a multiple of both 24 and 108 implies that n2 is a multiple of the least common multiple of 24 and 108. To determine the least common multiple of 24 and 108, factor 24 and 108 into prime factors as (23)(3) and (22)(33), respectively. Because these are prime factorizations, you can conclude that the least common
资料来源:教育优选 http://www.77cn.com.cn/
multiple of 24 and 108 is (23)(33). Knowing that n2 must be a multiple of (23)(33) does not mean that every multiple of (23)(33) is a possible value of n2, because n2 must be the square of an integer. The prime factorization of a square number must contain only even exponents. Thus, the least multiple of (23)(33) that is a square is (24)(34). This is the least possible value of n2, and so the least possible value of n is (22)(32), or 36. Furthermore, since every value of n2 is a multiple of (24)(34), the values of n are the positive multiples of 36; that is, S{36, 72, 108, 144, 180, . . .} .The question asks for integers that are pisors of every integer n in S, that is, pisors of every positive multiple of 36. Since Choice A, 12, is a pisor of 36, it is also a pisor of every multiple of 36. The same is true for Choice C, 36. Choices B and D, 24 and 72, are not pisors of 36, so they are not pisors of every integer in S. The correct answer consists of Choices A and C. 这个意思就是先求出24和108的最小公倍数,然后通过加倍使其成为一个整数的平方,这样就可以找出一系列的n了,这些n的公公因数应该有哪些?我找了前面的两个,36和72,所以AC可以选出来了,之后的所有数肯定包含了这两个选项,而BD因为不满足前面这两数,所以就排除了。
资料来源:教育优选 http://www.77cn.com.cn/
…… 此处隐藏:211字,全部文档内容请下载后查看。喜欢就下载吧 ……相关推荐:
- [互联网资料]2022年厦门大学机电工程系824机械设计
- [互联网资料]东南大学2022年硕士研究生拟录取名单公
- [互联网资料]能源调研报告(精选多篇)
- [互联网资料]初三英语下学期 中考英语 语法填空训练
- [互联网资料]2022内蒙古选调生行测常识备考:新事物
- [互联网资料]自驾必备!在新西兰租什么样的车自驾游
- [互联网资料]佛教素食菜谱44页未完
- [互联网资料]盈利能力分析外文翻译
- [互联网资料]2022年南昌航空大学音乐学院736马克思
- [互联网资料]优选外贸跟单实习报告总结(精品版)
- [互联网资料]银行新员工培训总结
- [互联网资料]2_year_visa_new_guidance_190316
- [互联网资料]天津市五校宝坻一中静海一中杨村一中芦
- [互联网资料]2007--2008学年第一学期高三数学宁波市
- [互联网资料]Chromatic framework for vision in ba
- [互联网资料]幼儿园大班上学期美术教案《心愿树》含
- [互联网资料]2022年华中农业大学信息学院820微型计
- [互联网资料]硬盘坏道的表现 __硬盘使用久了
- [互联网资料]江苏省2016年会计从业资格考试《会计基
- [互联网资料]公共场所卫生监督试卷全解
- 高级英语第一册所有修辞方法及例子总结
- 综合交通枢纽规划与城市发展
- 沃尔玛的企业文化案例分析
- 美国Thanksgiving Day 感恩节 介绍
- PEP六年级英语上册Unit6How do you fee
- 最齐全的中国大型商场购物中心名单
- 数据结构实验报告八—哈夫曼编译码
- 杭州市余杭区人民政府(通知)
- 七年级语文成语运用专项训练
- 微观经济学第三章 消费者行为 课后习题
- 对_钱学森之问_的思考
- Excel_三级联动_下拉菜单
- 办公用品需求计划申请表
- 对外汉语教材必须要知道的发展史
- 挑战杯大学生学术科技作品竞赛作品申报
- 举办民办教育培训机构应具备下列条件
- 太阳能路灯项目设计方案
- 2013年八年级上最新人教版新教材Unit3I
- 【历史】 6-4 《近代科学之父牛顿》 课
- 高中生物《第四章 第二节 探讨加酶洗衣