(含详答)2018年上海春考数学试卷(2)
18.(1)(?3,0);(2)19.(1)
5?1. 21;(2)9.59?. 41?x1?1(0?x?1);20.(1)f(x)?log2(2)ymax?(x?0时取最值); x1?2a?a2(3)(0,2] 提示:g(x)?11?a1?a?2x?1?a?2x?1?a2?2x?22x?3a
?a,(t?2x?(0,1])a2?t?2t?3a 因为-a<0,所以当x=0,t=1时,分母取到最小值从而分式值取到最小值,
a22此时t?t?t?2a2?1?0?a?2 21.(1)证明:存在m?2n,此时?n?N*,cn?2n?am?2n?1?cn?1?2n?2(2)不是.反例:n?4时,m无解; (3)??a?0?q?2. 提示:因为{aqn?1}为递增数列,因此??a?0?a?0?q?1或者??0?q?1
①当??a?00?q?1时,??n?N*,cn?0,因此??T3?T2?T1?c1?c2?c3??
因此不存在c2?Tm?c3,不合题意。
②当??a?0时,?q?1cn?1qm?1n?Tm?cn?1?q?q?1?qn? qn?1(q?1)?1?qm?qn(q?1)?1?qn?1[(q?1)?1qn?1]?qm?qn[(q?1)?1qn]两边同时取对数得:n?1?logq[(q?1)?1qn?1]?m?n?logq[(q?1)?1qn] 6 / 7
证毕
1],x?0 xq记f(x)?logq[(q?1)?则n?1?f(n?1)?m?n?f(n) 下面分析函数f(n?1),f(n)的取值范围:
显然q?1时,f(x)?logq[(q?1)?1],x?0为减函数, xq因此f(??)?f(x)?f(0),即logq(q?1)?f(x)?1
(Ⅰ)当q?2时,logq(q?1)?0,因此总有0?f(n)?f(n?1)?1 此时??n?1?f(n?1)?n?1?1
?n?f(n)?n+0因此总存在m?n符合条件,使得n?1?f(n?1)?n?m?n?f(n)成立
(Ⅱ)当1?q?2时, logq(q?1)?0, 根据零点存在定理,并结合f(x)的单减性可知: 存在唯一正整数k使得f(k)?0?f(k?1)
此时??k?1?f(k?1)?k?1
?k?f(k)?k即k?1?k?1?f(k?1)?m?k?f(k)?k 显然不存在满足条件的正整数m 综上:a?0,q?2
7 / 7
相关推荐:
- [实用模板]第八章:法国“新浪潮”与“左岸派”
- [实用模板]2021年北京上半年临床医学检验技师生物
- [实用模板]SAP GUI 7.10客户端安装配置文档
- [实用模板]2001年临床执业医师资格考试综合笔试试
- [实用模板]36机场工作实用英语词汇总结
- [实用模板](一)社会保险稽核通知书
- [实用模板]安全教育主题班会材料
- [实用模板]濉溪县春季呼吸道传染病防控应急演练方
- [实用模板]长沙房地产市场周报(1.30-2.3)
- [实用模板]六年级数学上册典中点 - 图文
- [实用模板]C程序设计(红皮书)习题官方参考答案
- [实用模板]中国证监会第一届创业板发行审核委员会
- [实用模板]桥梁工程复习题
- [实用模板]2011学而思数学及答案
- [实用模板]初中病句修改专项练习
- [实用模板]监理学习知识1 - 图文
- [实用模板]小机灵杯四年级试题
- [实用模板]国贸专业毕业论文模板
- [实用模板]教育学概论考试练习题-判断题4
- [实用模板]2015届高考英语一轮复习精品资料(译林
- 00Nkmhe_市场营销学工商管理_电子商务_
- 事业单位考试法律常识
- 诚信教育实施方案
- 吉大小天鹅食品安全检测箱方案(高中低
- 房地产销售培训资料
- 高一地理必修1复习提纲
- 新概念英语第二册lesson_1_练习题
- 证券公司内部培训资料
- 小学英语时间介词专项练习
- 新世纪英语专业综合教程(第二版)第1册U
- 【新课标】浙教版最新2018年八年级数学
- 工程建设管理纲要
- 外研版 必修一Module 4 A Social Surve
- Adobe认证考试 AE复习资料
- 基于H.264AVC与AVS标准的帧内预测技术
- 《食品检验机构资质认定管理办法》(质
- ABB变频器培训课件
- (完整版)小学说明文阅读练习题及答案
- 深思洛克(SenseLock) 深思IV,深思4,深
- 弟子规全文带拼音