相交线与平行线精选综合提高试题
相交线与平行线综合提高
一、教学内容:
相交线与平行线综合提高
1. 了解对顶角的概念,掌握其性质,并会用它们进行推理和计算.
2. 了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义.
3. 知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线. 4. 知道两直线平行同位角相等,并进一步探索平行线的特征.
5. 知道过直线外一点有且仅有一条直线平行于已知直线.会用三角尺和直尺过已知直线外一点画这条直线的平行线.
6. 掌握平行线的三个判定方法,并学会用它们进行直线平行的推理.
二、知识要点:
1. 两条直线的位置关系
(1)在同一平面内,两条直线的位置关系有两种:相交与平行. (2)平行线:在同一平面内,不相交的两条直线叫平行线. 2. 几种特殊关系的角
(1)余角和补角:如果两个角的和是直角,称这两个角互为余角.如果两个角的和是平角,称这两个角互为补角.
(2)对顶角:
①定义:一个角的两边分别是另一个角两边的反向延长线,这两个角叫对顶角. ②性质:对顶角相等.
(3)同位角、内错角、同旁内角
两条直线分别与第三条直线相交,构成八个角.
①在两条直线之间并且在第三条直线的两旁的两个角叫做内错角. ②在两条直线的同一侧并且在第三条直线同旁的两个角叫做同位角. ③在两条直线之间并且在第三条直线同旁的两个角叫做同旁内角. 3. 主要的结论 (1)垂线
①过一点有且只有一条直线与已知直线垂直.
②直线外一点与直线上各点连结的所有线段中,垂线段最短.简称:垂线段最短. (2
4. 几个概念
(1)垂线段:过直线外一点,作已知直线的垂线,这点和垂足之间的线段. (2)点到直线的距离:从直线外一点到这条直线的垂线段的长度. 5. 几个基本图形
(1)相交线型.①一般型(如图①);②特殊型(垂直,如图②).
CC
A
O
B
A
OB
D
D
①
②
(2)三线八角.①一般型(如图①);②特殊型(平行,如图②).
E
E
B
A
B
AC
C
D
D
F
F
①
②
三、重点难点:
重点有两个:一方面要掌握关于相交线和平行线的一些基本事实,另一方面学会借助三角尺上的直角或量角器画已知直线的垂线,用移动三角尺的方法画平行线.难点是是利用对顶角的性质、平行线的特征、两直线平行的条件等进行推理和计算.
四、考点分析:
考查(1)对顶角的性质;(2)平行线的识别方法;(3)平行线的特征,其中依据平行线的识别与特征解决一类与平行线有关的几何问题是历届中考命题的重要考点.常见题型有填空题、选择题和解答题,单纯考查一个知识点的题目并不难,属于中低档题,将平行线的特征与其他知识综合起来考查的题目难度较大,属高档题.
【典型例题】
例1. 如图所示,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4,求∠α、∠D、∠B的度数.
F
C1
A
B
D
E
分析:由条件∠α∶∠D∶∠B=2∶3∶4.可以分别设出∠α、∠D、∠B,再根据题目给出的条件建
立方程求解.
解:设∠α=2x,∠D=3x,∠B=4x. ∵FC∥AB∥DE,
∴∠2+∠B=180°,∠1+∠D=180°, ∴∠2=180°-4x,∠1=180°-3x, 又∵∠1+∠α+∠2=180°,
∴180°-3x+2x+180°-4x=180°,
∴5x=180°,x=36°,
∴∠α=2x=72°,∠D=3x=108°,∠B=4x=144°.
评析:解答这类计算题不仅要熟悉图形的性质,还要善于进行等量转化,把待求的角逐步和已知条件建立起联系来,当待求结论要经过复杂过程才能求得时,一定要思路清晰、叙述表达严密.
例2. 如图所示,直线a∥b,则∠A=__________.
A
A
D
aE
BE
B
aCb
C
b
分析:已知条件a∥b能转化为三线八角,过A作AD∥a,那么已知的两个角可转换到顶点A(都用内错关系转化),可求∠A. 由AD∥a,a∥b,可知AD∥b,由两直线平行内错角相等得:∠DAB=∠ABE=28°,∠DAE=50°,∴∠EAB=50°-28°=22°.
解:22°
评析:用平行线三线八角把已知角转化成以A为顶点的角即可.
例3. 已知:如图所示,DF∥AC,∠1=∠2.试说明DE∥AB.
A
FE
2
B
D
C
分析:要说明DE∥AB,可以证明∠1=∠A,而由DF∥AC,有∠2=∠A,又因为∠1=∠2,故有∠1=∠A,从而结论成立.
解:∵DF∥AC(已知),
∴∠2=∠A(两直线平行,同位角相等). ∵∠1=∠2(已知), ∴∠1=∠A(等式性质),
∴DE∥AB(同位角相等,两直线平行).
评析:说明两直线平行的方法有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁
内角互补,两直线平行;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行.
例4. 试说明:两条平行线被第三条直线所截,一对内错角的平分线互相平行. 分析:先根据题意画出图形,标注字母,找出已知条件和问题,再进行说明.
E
A
GB
NM
2C
H
D
F
解:已知:如图所示,AB∥CD,EF分别交AB、CD于G、H,GM、HN分别平分∠BGF、∠EHC. 说明GM∥HN.
∵GM、HN分别平分∠BGF、∠EHC(已知), ∴∠1=∠BGF,∠2=∠EHC(角平分线定义). ∵AB∥CD,
∴∠BGF=∠EHC(两直线平行,内错角相等). ∴∠1=∠2.
∴GM∥HN(内错角相等,两直线平行). 评析:(1)上题把内错角平分线改为同位角平分线,原结论也成立,请同学们自己试着解一解.(2)此题为文字题,首先应根据题意画出图形,再根据已知条件和结论结合图形写出解题过程.
例5. 如图所示,已知CE∥DF,说明∠ACE=∠A+∠ABF.
G
A
C
E
D
B
F
分析:结论中∠ACE,∠A与∠ABF在三个顶点处,条件CE∥DF不能直接运用,结论形式启示我们用割补法,即构造一个角等于∠A+∠ABF,因此想到在点A处补上一个∠GAB=∠ABF,只要GA∥DF即可,同时可得GA∥CE,∠GAC=∠ACE,结论便成立.
解:过A作AG∥DF,
∴∠GAB=∠ABF(两直线平行,内错角相等) 又∵AG∥DF,CE∥DF(已知)
∴AG∥CE(平行于同一直线的两条直线互相平行) ∴∠GAC=∠ACE(两直线平行,内错角相等) 又∵∠GAC=∠BAC+∠GAB(已知)
∴∠ACE=∠BAC+∠ABF(等量代换). 评析:(1)割补法是一种常用方法.(2)此题还可以过点C作一条直线与AB平行,把∠ACE分成两个角后,分别说明这两个角与∠A、∠ABF相等.
例6. 解放战争时期,有一天江南某游击队在村庄A点出发向正东行进,此时有一支残匪在游击队的东北方向B点处(如图所示,残匪沿北偏东60°角方向,向C村进发.游击队步行到A’处,A’正在B的正南方向上,突然接到上级命令,决 …… 此处隐藏:5636字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [实用模板]第八章:法国“新浪潮”与“左岸派”
- [实用模板]2021年北京上半年临床医学检验技师生物
- [实用模板]SAP GUI 7.10客户端安装配置文档
- [实用模板]2001年临床执业医师资格考试综合笔试试
- [实用模板]36机场工作实用英语词汇总结
- [实用模板](一)社会保险稽核通知书
- [实用模板]安全教育主题班会材料
- [实用模板]濉溪县春季呼吸道传染病防控应急演练方
- [实用模板]长沙房地产市场周报(1.30-2.3)
- [实用模板]六年级数学上册典中点 - 图文
- [实用模板]C程序设计(红皮书)习题官方参考答案
- [实用模板]中国证监会第一届创业板发行审核委员会
- [实用模板]桥梁工程复习题
- [实用模板]2011学而思数学及答案
- [实用模板]初中病句修改专项练习
- [实用模板]监理学习知识1 - 图文
- [实用模板]小机灵杯四年级试题
- [实用模板]国贸专业毕业论文模板
- [实用模板]教育学概论考试练习题-判断题4
- [实用模板]2015届高考英语一轮复习精品资料(译林
- 00Nkmhe_市场营销学工商管理_电子商务_
- 事业单位考试法律常识
- 诚信教育实施方案
- 吉大小天鹅食品安全检测箱方案(高中低
- 房地产销售培训资料
- 高一地理必修1复习提纲
- 新概念英语第二册lesson_1_练习题
- 证券公司内部培训资料
- 小学英语时间介词专项练习
- 新世纪英语专业综合教程(第二版)第1册U
- 【新课标】浙教版最新2018年八年级数学
- 工程建设管理纲要
- 外研版 必修一Module 4 A Social Surve
- Adobe认证考试 AE复习资料
- 基于H.264AVC与AVS标准的帧内预测技术
- 《食品检验机构资质认定管理办法》(质
- ABB变频器培训课件
- (完整版)小学说明文阅读练习题及答案
- 深思洛克(SenseLock) 深思IV,深思4,深
- 弟子规全文带拼音




