教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 范文大全 > 经典范文大全 >

平面向量的数量积及运算律(4篇)(3)

来源:网络收集 时间:2025-11-07
导读: (2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系 四、课堂练习: 1 下列叙述不正确的是( ) a 向量的数量积满足交换律 b 向量的数量积满足分配律 c 向量的数量积满足结合

(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系

四、课堂练习:

1 下列叙述不正确的是(   )

a 向量的数量积满足交换律     b 向量的数量积满足分配律

c 向量的数量积满足结合律     d  • 是一个实数

2 已知| |=6,| |=4, 与 的夹角为60°,则( +2 )•( -3 )等于(    )

a 72           b -72           c 36        d -36

3 | |=3,| |=4,向量 +  与 -  的位置关系为(    )

a 平行         b 垂直        c 夹角为   d 不平行也不垂直

4 已知| |=3,| |=4,且 与 的夹角为150°,则( + )2=

5 已知| |=2,| |=5, • =-3,则| + |=______,| - |=

6 设| |=3,| |=5,且 +λ 与 -λ 垂直,则λ=

参考答案:1 c  2 b  3 b  4 2 5 -1+2   5     6 ±

五、小结  通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质解决相关问题

六、课后作业

1 已知| |=1,| |= ,且( - )与 垂直,则 与 的夹角是(    )

a 60°         b 30°          c 135°         d 45°

2 已知| |=2,| |=1, 与 之间的夹角为 ,那么向量 = -4 的模为

a 2            b 2           c 6            d 12

3 已知 、 是非零向量,则| |=| |是( + )与( - )垂直的(    )

a 充分但不必要条件               b 必要但不充分条件

c 充要条件                          d 既不充分也不必要条件

4 已知向量 、 的夹角为 ,| |=2,| |=1,则| + |•| - |=

5 已知 + =2 -8 , - =-8 +16 ,其中 、 是直角坐标系中x轴、y轴正方向上的单位向量,那么 • =

6 已知 ⊥ 、 与 、 的夹角均为60°,且| |=1,| |=2,|  |=3,则( +2 - )2=______

7 已知| |=1,| |= ,(1)若 ∥ ,求 • ;(2)若 、 的夹角为60°,求| + |;(3)若 - 与 垂直,求 与 的夹角

8 设 、 是两个单位向量,其夹角为60°,求向量 =2 + 与 =2 -3 的夹角 

9 对于两个非零向量 、 ,求使| +t |最小时的t值,并求此时 与 +t 的夹角

参考答案:1 d  2 b  3 c  4    5  –63   6  11

7 (1)-    (2)   (3)45° 8  120°  9  90°

七、板书设计(略)

八、课后记及备用资料:

1 常用数量积运算公式:在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛

即( + )2= 2+2 • + 2,( - )2= 2-2 • + 2

上述两公式以及( + )( - )= 2- 2这一类似于实数平方差的公式在解题过程中可以直接应用

2 应用举例

例1 已知| |=2,| |=5, • =-3,求| + |,| - |

解:∵| + |2=( + )2= 2+2 • + 2=22+2×(-3)+52=23

∴| + |= ,∵(| - |)2=( - )2= 2-2 • + 2=22-2×(-3)×52=35,

∴| - |= .

例2 已知| |=8,| |=10,| + |=16,求 与 的夹角θ(精确到1°)

解:∵(| + |)2=( + )2= 2+2 • + 2=| |2+2| |•| |cosθ+| |2

∴162=82+2×8×10cosθ+102,

∴cosθ= ,∴θ≈55°

平面向量的数量积及运算律(4篇)(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/fanwen/2031362.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)